📄 boundsph.c
字号:
/*An Efficient Bounding Sphereby Jack Ritterfrom "Graphics Gems", Academic Press, 1990*//* Routine to calculate tight bounding sphere over *//* a set of points in 3D *//* This contains the routine find_bounding_sphere(), *//* the struct definition, and the globals used for parameters. *//* The abs() of all coordinates must be < BIGNUMBER *//* Code written by Jack Ritter and Lyle Rains. */#include <stdio.h>#include <math.h>#include "GGems.h"#define BIGNUMBER 100000000.0 /* hundred million *//* GLOBALS. These are used as input and output parameters. */ struct Point3Struct caller_p,cen;double rad;int NUM_POINTS;/* Call with no parameters. Caller must set NUM_POINTS *//* before calling. *//* Caller must supply the routine GET_iTH_POINT(i), which loads his *//* ith point into the global struct caller_p. (0 <= i < NUM_POINTS). *//* The calling order of the points is irrelevant. *//* The final bounding sphere will be put into the globals *//* cen and rad. */find_bounding_sphere(){register int i;register double dx,dy,dz;register double rad_sq,xspan,yspan,zspan,maxspan;double old_to_p,old_to_p_sq,old_to_new;struct Point3Struct xmin,xmax,ymin,ymax,zmin,zmax,dia1,dia2;/* FIRST PASS: find 6 minima/maxima points */xmin.x=ymin.y=zmin.z= BIGNUMBER; /* initialize for min/max compare */xmax.x=ymax.y=zmax.z= -BIGNUMBER;for (i=0;i<NUM_POINTS;i++) { GET_iTH_POINT(i); /* load global struct caller_p with */ /* his ith point. */ if (caller_p.x<xmin.x) xmin = caller_p; /* New xminimum point */ if (caller_p.x>xmax.x) xmax = caller_p; if (caller_p.y<ymin.y) ymin = caller_p; if (caller_p.y>ymax.y) ymax = caller_p; if (caller_p.z<zmin.z) zmin = caller_p; if (caller_p.z>zmax.z) zmax = caller_p; }/* Set xspan = distance between the 2 points xmin & xmax (squared) */dx = xmax.x - xmin.x;dy = xmax.y - xmin.y;dz = xmax.z - xmin.z;xspan = dx*dx + dy*dy + dz*dz;/* Same for y & z spans */dx = ymax.x - ymin.x;dy = ymax.y - ymin.y;dz = ymax.z - ymin.z;yspan = dx*dx + dy*dy + dz*dz;dx = zmax.x - zmin.x;dy = zmax.y - zmin.y;dz = zmax.z - zmin.z;zspan = dx*dx + dy*dy + dz*dz;/* Set points dia1 & dia2 to the maximally separated pair */dia1 = xmin; dia2 = xmax; /* assume xspan biggest */maxspan = xspan;if (yspan>maxspan) { maxspan = yspan; dia1 = ymin; dia2 = ymax; }if (zspan>maxspan) { dia1 = zmin; dia2 = zmax; }/* dia1,dia2 is a diameter of initial sphere *//* calc initial center */cen.x = (dia1.x+dia2.x)/2.0;cen.y = (dia1.y+dia2.y)/2.0;cen.z = (dia1.z+dia2.z)/2.0;/* calculate initial radius**2 and radius */dx = dia2.x-cen.x; /* x component of radius vector */dy = dia2.y-cen.y; /* y component of radius vector */dz = dia2.z-cen.z; /* z component of radius vector */rad_sq = dx*dx + dy*dy + dz*dz;rad = sqrt(rad_sq);/* SECOND PASS: increment current sphere */for (i=0;i<NUM_POINTS;i++) { GET_iTH_POINT(i); /* load global struct caller_p */ /* with his ith point. */ dx = caller_p.x-cen.x; dy = caller_p.y-cen.y; dz = caller_p.z-cen.z; old_to_p_sq = dx*dx + dy*dy + dz*dz; if (old_to_p_sq > rad_sq) /* do r**2 test first */ { /* this point is outside of current sphere */ old_to_p = sqrt(old_to_p_sq); /* calc radius of new sphere */ rad = (rad + old_to_p) / 2.0; rad_sq = rad*rad; /* for next r**2 compare */ old_to_new = old_to_p - rad; /* calc center of new sphere */ cen.x = (rad*cen.x + old_to_new*caller_p.x) / old_to_p; cen.y = (rad*cen.y + old_to_new*caller_p.y) / old_to_p; cen.z = (rad*cen.z + old_to_new*caller_p.z) / old_to_p; /* Suppress if desired */ printf("\n New sphere: cen,rad = %f %f %f %f", cen.x,cen.y,cen.z, rad); } }} /* end of find_bounding_sphere() */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -