📄 fxrapt.m
字号:
vipkd(vpkd<max(vpkd)*candtr,:)=[]; % eliminate peaks that are small
if size(vipkd,1)
if size(vipkd,1)>ncands-1
vipkd=sortrows(vipkd);
vipkd(1:size(vipkd,1)-ncands+1,:)=[]; % eliminate lowest to leave only ncands-1
end
lagcan=round(vipkd(:,2)*kdsmp+lagoff); % convert the lag candidate values to the full sample rate
nlcan=length(lagcan);
else
nlcan=0;
end
% If there are any candidate lag values (nlcan>0) then refine their accuracy at the full sample rate
if nlcan
laglist=reshape(repmat(lagcan(:)',nfullag,1)+repmat((-hnfullag:hnfullag)',1,nlcan),nfullag*nlcan,1);
fho=(iframe-1)*kframe+spoff;
sfh=s(fho+(1:kcorw+max(lagcan)+hnfullag));
sfhdc=mean(sfh(sfhi));
sfh=sfh-sfhdc;
e0=sum(sfh(sfhi).^2); % energy of initial correlation window (only needed to store in tv(:,6)
lagl2=repmat(lagcan(:)',nfullag+kcorw-1,1)+repmat((1-hnfullag:hnfullag+kcorw)',1,nlcan);
nccf=normxcor(sfh(1:kcorw),sfh(lagl2),afact);
[maxcc,maxcci]=max(nccf,[],1);
vipk=[maxcc(:) lagcan(:)+maxcci(:)-hnfullag-1];
vipk=vipk(:,[1 2 2]);
maxccj=maxcci(:)'+nfullag*(0:nlcan-1); % vector index into nccf array
msk=mod(maxcci,nfullag-1)~=1 & 2*nccf(maxccj)-nccf(mod(maxccj-2,nfullag*nlcan)+1)-nccf(mod(maxccj,nfullag*nlcan)+1)>0; % don't do quadratic interpolation for the end ones
if any(msk)
maxccj=maxccj(msk);
vipk(msk,3)=vipk(msk,3)+(nccf(maxccj+1)-nccf(maxccj-1))'./(2*(2*nccf(maxccj)-nccf(maxccj-1)-nccf(maxccj+1)))';
end
vipk(maxcc<max(maxcc)*candtr,:)=[]; % eliminate peaks that are small
if size(vipk,1)>ncands-1
vipk=sortrows(vipk);
vipk(1:size(vipk,1)-ncands+1,:)=[]; % eliminate lowest to leave only ncands-1
end
% vipk(:,1) has NCCF value, vipk(:,2) has integer peak position, vipk(:,3) has refined peak position
mc=size(vipk,1);
else
mc=0;
end
% We now have mc lag candidates at the full sample rate
mc1=mc+1; % total number of candidates including "unvoiced" possibility
mcands(iframe)=mc; % save number of lag candidates (needed for pitch consistency cost calculation)
if mc
lagval(iframe,1:mc)=vipk(:,3)';
cost(iframe,1)=vobias+max(vipk(:,1)); % voiceless cost
cost(iframe,2:mc1)=1-vipk(:,1)'.*(1-beta*vipk(:,3)'); % local voiced costs
tv(iframe,2)=min(cost(iframe,2:mc1));
else
cost(iframe,1)=vobias; % if no lag candidates (mc=0), then the voiceless case is the only possibility
end
tv(iframe,1)=cost(iframe,1);
if iframe>1 % if it is not the first frame, then calculate pitch consistency and v/uv transition costs
mcp=mcands(iframe-1);
costm=zeros(mcp+1,mc1); % cost matrix: rows and cols correspond to candidates in previous and current frames (incl voiceless)
% if both frames have at least one lag candidate, then calculate a pitch consistency cost
if mc*mcp
lrat=abs(log(repmat(lagval(iframe,1:mc),mcp,1)./repmat(lagval(iframe-1,1:mcp)',1,mc)));
costm(2:end,2:end)=freqwt*min(lrat,doublec+abs(lrat-log2)); % allow pitch doubling/halving
end
% if either frame has a lag candidate, then calcualte the cost of voiced/voiceless transition and vice versa
if mc+mcp
rr=sqrt((rmswin'*s(fho+rmsix).^2)/(rmswin'*s(fho+rmsix-kdrms).^2)); % amplitude "gradient"
ss=0.2/(distitar(lpcauto(sp(fho+rmsix),lpcord),lpcauto(sp(fho+rmsix-kdrms),lpcord),'e')-0.8); % Spectral stationarity: note: Talkin uses Hanning instead of Hamming windows for LPC
costm(1,2:end)= vtranc+vtrsc*ss+vtrac/rr; % voiceless -> voiced cost
costm(2:end,1)= vtranc+vtrsc*ss+vtrac*rr;
tv(iframe,4:5)=[costm(1,mc1) costm(mcp+1,1)];
end
costm=costm+repmat(cost(iframe-1,1:mcp+1)',1,mc1); % add in cumulative costs
[costi,previ]=min(costm,[],1);
cost(iframe,1:mc1)=cost(iframe,1:mc1)+costi;
prev(iframe,1:mc1)=previ;
else % first ever frame
costm=zeros(1,mc1); % create a cost matrix in case doing a backward recursion
end
if mc
tv(iframe,3)=cost(iframe,1)-min(cost(iframe,2:mc1));
tv(iframe,6)=5*log10(e0*e0/afact);
end
if doback
costms{iframe}=costm; % need to add repmatted cost into this
end
end
% now do traceback
best=zeros(nframe,1);
[cbest,best(nframe)]=min(cost(nframe,1:mcands(nframe)+1));
for i=nframe:-1:2
best(i-1)=prev(i,best(i));
end
vix=find(best>1);
fx=repmat(NaN,nframe,1); % unvoiced frames will be NaN
fx(vix)=fs*lagval(vix+nframe*(best(vix)-2)).^(-1); % leave as NaN if unvoiced
tt=zeros(nframe,3);
tt(:,1)=(1:nframe)'*kframe+spoff; % find frame times
tt(:,2)=tt(:,1)+kframe-1;
jratm=(jumprat+1/jumprat)/2;
tt(2:end,3)=abs(fx(2:end)./fx(1:end-1)-jratm)>jumprat-jratm; % new spurt if frequency ratio is outside (1/jumprat,jumprat)
tt(1,3)=1; % first frame always starts a spurt
tt(1+find(isnan(fx(1:end-1))),3)=1; % NaN always forces a new spurt
% plot results if there are no output arguments of if the 'g' mode option is specified
if ~nargout | any(mode=='g')
tf=spoff+(0:nframe-1)'*kframe; % one sample before start of each frame
blag=repmat(NaN,nframe,1); % unvoiced frames will be NaN
blag(vix)=lagval(vix+nframe*(best(vix)-2)); % leave as NaN if unvoiced
ts=(1:ns)/fs; % time scale for speech samples
tsa=[1:tf(1) tf(end)+kframe+1:ns]; % indexes for unprocessed speech [-1 term is an error methinks]
sup=repmat(NaN,ns,1); % unprocessed speech - plot in black
sup(tsa)=s(tsa);
sv=reshape(s(tf(1)+1:tf(end)+kframe),kframe,nframe); % processed speech
su=sv;
su(:,best>1)=NaN; % delete all voiced samples
sv(:,best==1)=NaN; % delete all unvoiced samples
tsuv=(tf(1)+1:tf(end)+kframe)/fs;
su=su(:);
sv=sv(:);
subplot(211)
plot(ts,sup,'-k',tsuv,su,'r-',tsuv,sv,'b-');
title('Speech');
subplot(212)
plot((tf+(kframe+1)/2)/fs,lagval*1000/fs,'xr',(tf+(kframe+1)/2)/fs,blag*1000/fs,'-b')
xlabel('Time (s)');
ylabel('Period (ms)');
title('Lag Candidates');
end
tt(isnan(fx),:)=[]; % remove NaN spurts
fx(isnan(fx),:)=[];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v=normxcor(x,y,d)
% Calculate the normalized cross correlation of column vectors x and y
% we can calculate this in two ways but fft is much faster even for nx small
% We must have nx<=ny and the output length is ny-nx+1
% note that this routine does not do mean subtraction even though this is normally a good idea
% if y is a matrix, we correlate with each column
% d is a constant added onto the normalization factor
% v(j)=x'*yj/sqrt(d + x'*x * yj'*yj) where yj=y(j:j+nx-1) for j=1:ny-nx+1
if nargin<3
d=0;
end
nx=length(x);
[ny,my]=size(y);
nv=1+ny-nx;
if nx>ny
error('second argument is shorter than the first');
end
nf=pow2(nextpow2(ny));
w=irfft(repmat(conj(rfft(x,nf,1)),1,my).*rfft(y,nf,1));
s=zeros(ny+1,my);
s(2:end,:)=cumsum(y.^2,1);
v=w(1:nv,:)./sqrt(d+(x'*x).*(s(nx+1:end,:)-s(1:end-nx,:)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -