⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfm_desc.c

📁 在BOOTLOADR中增加当今最好AES加密技术,可用于客户远程更新应用程式
💻 C
字号:
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com */#define DESC_DEF_ONLY#include "tomcrypt.h"#ifdef TFM_DESC#include <tfm.h>static const struct {    int tfm_code, ltc_code;} tfm_to_ltc_codes[] = {   { FP_OKAY ,  CRYPT_OK},   { FP_MEM  ,  CRYPT_MEM},   { FP_VAL  ,  CRYPT_INVALID_ARG},};/**   Convert a tfm error to a LTC error (Possibly the most powerful function ever!  Oh wait... no)    @param err    The error to convert   @return The equivalent LTC error code or CRYPT_ERROR if none found*/static int tfm_to_ltc_error(int err){   int x;   for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) {       if (err == tfm_to_ltc_codes[x].tfm_code) {           return tfm_to_ltc_codes[x].ltc_code;       }   }   return CRYPT_ERROR;}static int init(void **a){   LTC_ARGCHK(a != NULL);   *a = XCALLOC(1, sizeof(fp_int));   if (*a == NULL) {      return CRYPT_MEM;   }   fp_init(*a);   return CRYPT_OK;}static void deinit(void *a){   LTC_ARGCHK(a != NULL);   XFREE(a);}static int neg(void *a, void *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_neg(((fp_int*)a), ((fp_int*)b));   return CRYPT_OK;}static int copy(void *a, void *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_copy(a, b);   return CRYPT_OK;}static int init_copy(void **a, void *b){   if (init(a) != CRYPT_OK) {      return CRYPT_MEM;   }   return copy(b, *a);}/* ---- trivial ---- */static int set_int(void *a, unsigned long b){   LTC_ARGCHK(a != NULL);   fp_set(a, b);   return CRYPT_OK;}static unsigned long get_int(void *a){   fp_int *A;   LTC_ARGCHK(a != NULL);   A = a;   return A->used > 0 ? A->dp[0] : 0;}static unsigned long get_digit(void *a, int n){   fp_int *A;   LTC_ARGCHK(a != NULL);   A = a;   return (n >= A->used || n < 0) ? 0 : A->dp[n];}static int get_digit_count(void *a){   fp_int *A;   LTC_ARGCHK(a != NULL);   A = a;   return A->used;}   static int compare(void *a, void *b){   int ret;   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   ret = fp_cmp(a, b);   switch (ret) {      case FP_LT: return LTC_MP_LT;      case FP_EQ: return LTC_MP_EQ;      case FP_GT: return LTC_MP_GT;   }   return 0;}static int compare_d(void *a, unsigned long b){   int ret;   LTC_ARGCHK(a != NULL);   ret = fp_cmp_d(a, b);   switch (ret) {      case FP_LT: return LTC_MP_LT;      case FP_EQ: return LTC_MP_EQ;      case FP_GT: return LTC_MP_GT;   }   return 0;}static int count_bits(void *a){   LTC_ARGCHK(a != NULL);   return fp_count_bits(a);}static int twoexpt(void *a, int n){   LTC_ARGCHK(a != NULL);   fp_2expt(a, n);   return CRYPT_OK;}/* ---- conversions ---- *//* read ascii string */static int read_radix(void *a, const char *b, int radix){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix));}/* write one */static int write_radix(void *a, char *b, int radix){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   return tfm_to_ltc_error(fp_toradix(a, b, radix));}/* get size as unsigned char string */static unsigned long unsigned_size(void *a){   LTC_ARGCHK(a != NULL);   return fp_unsigned_bin_size(a);}/* store */static int unsigned_write(void *a, unsigned char *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_to_unsigned_bin(a, b);   return CRYPT_OK;}/* read */static int unsigned_read(void *a, unsigned char *b, unsigned long len){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_read_unsigned_bin(a, b, len);   return CRYPT_OK;}/* add */static int add(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   fp_add(a, b, c);   return CRYPT_OK;}  static int addi(void *a, unsigned long b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(c != NULL);   fp_add_d(a, b, c);   return CRYPT_OK;}/* sub */static int sub(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   fp_sub(a, b, c);   return CRYPT_OK;}static int subi(void *a, unsigned long b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(c != NULL);   fp_sub_d(a, b, c);   return CRYPT_OK;}/* mul */static int mul(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   fp_mul(a, b, c);    return CRYPT_OK;}static int muli(void *a, unsigned long b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(c != NULL);   fp_mul_d(a, b, c);   return CRYPT_OK;}/* sqr */static int sqr(void *a, void *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_sqr(a, b);   return CRYPT_OK;}/* div */static int divide(void *a, void *b, void *c, void *d){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   return tfm_to_ltc_error(fp_div(a, b, c, d));}static int div_2(void *a, void *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_div_2(a, b);   return CRYPT_OK;}/* modi */static int modi(void *a, unsigned long b, unsigned long *c){   fp_digit tmp;   int      err;   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(c != NULL);   if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) {      return err;   }   *c = tmp;   return CRYPT_OK;}  /* gcd */static int gcd(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   fp_gcd(a, b, c);   return CRYPT_OK;}/* lcm */static int lcm(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   fp_lcm(a, b, c);   return CRYPT_OK;}static int mulmod(void *a, void *b, void *c, void *d){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   LTC_ARGCHK(d != NULL);   return tfm_to_ltc_error(fp_mulmod(a,b,c,d));}/* invmod */static int invmod(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   return tfm_to_ltc_error(fp_invmod(a, b, c));}/* setup */static int montgomery_setup(void *a, void **b){   int err;   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   *b = XCALLOC(1, sizeof(fp_digit));   if (*b == NULL) {      return CRYPT_MEM;   }   if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) {      XFREE(*b);   }   return err;}/* get normalization value */static int montgomery_normalization(void *a, void *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   fp_montgomery_calc_normalization(a, b);   return CRYPT_OK;}/* reduce */static int montgomery_reduce(void *a, void *b, void *c){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   fp_montgomery_reduce(a, b, *((fp_digit *)c));   return CRYPT_OK;}/* clean up */static void montgomery_deinit(void *a){   XFREE(a);}static int exptmod(void *a, void *b, void *c, void *d){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   LTC_ARGCHK(d != NULL);   return tfm_to_ltc_error(fp_exptmod(a,b,c,d));}   static int isprime(void *a, int *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   *b = (fp_isprime(a) == FP_YES) ? LTC_MP_YES : LTC_MP_NO;   return CRYPT_OK;}#if defined(MECC) && defined(MECC_ACCEL)static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp){   fp_int t1, t2;   fp_digit mp;   LTC_ARGCHK(P       != NULL);   LTC_ARGCHK(R       != NULL);   LTC_ARGCHK(modulus != NULL);   LTC_ARGCHK(Mp      != NULL);   mp = *((fp_digit*)Mp);   fp_init(&t1);   fp_init(&t2);   if (P != R) {      fp_copy(P->x, R->x);      fp_copy(P->y, R->y);      fp_copy(P->z, R->z);   }   /* t1 = Z * Z */   fp_sqr(R->z, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* Z = Y * Z */   fp_mul(R->z, R->y, R->z);   fp_montgomery_reduce(R->z, modulus, mp);   /* Z = 2Z */   fp_add(R->z, R->z, R->z);   if (fp_cmp(R->z, modulus) != FP_LT) {      fp_sub(R->z, modulus, R->z);   }      /* &t2 = X - T1 */   fp_sub(R->x, &t1, &t2);   if (fp_cmp_d(&t2, 0) == FP_LT) {      fp_add(&t2, modulus, &t2);   }   /* T1 = X + T1 */   fp_add(&t1, R->x, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* T2 = T1 * T2 */   fp_mul(&t1, &t2, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T1 = 2T2 */   fp_add(&t2, &t2, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* T1 = T1 + T2 */   fp_add(&t1, &t2, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* Y = 2Y */   fp_add(R->y, R->y, R->y);   if (fp_cmp(R->y, modulus) != FP_LT) {      fp_sub(R->y, modulus, R->y);   }   /* Y = Y * Y */   fp_sqr(R->y, R->y);   fp_montgomery_reduce(R->y, modulus, mp);   /* T2 = Y * Y */   fp_sqr(R->y, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T2 = T2/2 */   if (fp_isodd(&t2)) {      fp_add(&t2, modulus, &t2);   }   fp_div_2(&t2, &t2);   /* Y = Y * X */   fp_mul(R->y, R->x, R->y);   fp_montgomery_reduce(R->y, modulus, mp);   /* X  = T1 * T1 */   fp_sqr(&t1, R->x);   fp_montgomery_reduce(R->x, modulus, mp);   /* X = X - Y */   fp_sub(R->x, R->y, R->x);   if (fp_cmp_d(R->x, 0) == FP_LT) {      fp_add(R->x, modulus, R->x);   }   /* X = X - Y */   fp_sub(R->x, R->y, R->x);   if (fp_cmp_d(R->x, 0) == FP_LT) {      fp_add(R->x, modulus, R->x);   }   /* Y = Y - X */        fp_sub(R->y, R->x, R->y);   if (fp_cmp_d(R->y, 0) == FP_LT) {      fp_add(R->y, modulus, R->y);   }   /* Y = Y * T1 */   fp_mul(R->y, &t1, R->y);   fp_montgomery_reduce(R->y, modulus, mp);   /* Y = Y - T2 */   fp_sub(R->y, &t2, R->y);   if (fp_cmp_d(R->y, 0) == FP_LT) {      fp_add(R->y, modulus, R->y);   }    return CRYPT_OK;}/**   Add two ECC points   @param P        The point to add   @param Q        The point to add   @param R        [out] The destination of the double   @param modulus  The modulus of the field the ECC curve is in   @param mp       The "b" value from montgomery_setup()   @return CRYPT_OK on success*/static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp){   fp_int  t1, t2, x, y, z;   fp_digit mp;        LTC_ARGCHK(P       != NULL);   LTC_ARGCHK(Q       != NULL);   LTC_ARGCHK(R       != NULL);   LTC_ARGCHK(modulus != NULL);   LTC_ARGCHK(Mp      != NULL);   mp = *((fp_digit*)Mp);   fp_init(&t1);   fp_init(&t2);   fp_init(&x);   fp_init(&y);   fp_init(&z);   /* should we dbl instead? */   fp_sub(modulus, Q->y, &t1);   if ( (fp_cmp(P->x, Q->x) == FP_EQ) &&         (fp_cmp(P->z, Q->z) == FP_EQ) &&        (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) {        return tfm_ecc_projective_dbl_point(P, R, modulus, Mp);   }   fp_copy(P->x, &x);   fp_copy(P->y, &y);   fp_copy(P->z, &z);   /* if Z is one then these are no-operations */      /* T1 = Z' * Z' */      fp_sqr(Q->z, &t1);      fp_montgomery_reduce(&t1, modulus, mp);      /* X = X * T1 */      fp_mul(&t1, &x, &x);      fp_montgomery_reduce(&x, modulus, mp);      /* T1 = Z' * T1 */      fp_mul(Q->z, &t1, &t1);      fp_montgomery_reduce(&t1, modulus, mp);      /* Y = Y * T1 */      fp_mul(&t1, &y, &y);      fp_montgomery_reduce(&y, modulus, mp);      /* T1 = Z*Z */   fp_sqr(&z, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* T2 = X' * T1 */   fp_mul(Q->x, &t1, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T1 = Z * T1 */   fp_mul(&z, &t1, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* T1 = Y' * T1 */   fp_mul(Q->y, &t1, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* Y = Y - T1 */   fp_sub(&y, &t1, &y);   if (fp_cmp_d(&y, 0) == FP_LT) {      fp_add(&y, modulus, &y);   }   /* T1 = 2T1 */   fp_add(&t1, &t1, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* T1 = Y + T1 */   fp_add(&t1, &y, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* X = X - T2 */   fp_sub(&x, &t2, &x);   if (fp_cmp_d(&x, 0) == FP_LT) {      fp_add(&x, modulus, &x);   }   /* T2 = 2T2 */   fp_add(&t2, &t2, &t2);   if (fp_cmp(&t2, modulus) != FP_LT) {      fp_sub(&t2, modulus, &t2);   }   /* T2 = X + T2 */   fp_add(&t2, &x, &t2);   if (fp_cmp(&t2, modulus) != FP_LT) {      fp_sub(&t2, modulus, &t2);   }   /* if Z' != 1 */      /* Z = Z * Z' */      fp_mul(&z, Q->z, &z);      fp_montgomery_reduce(&z, modulus, mp);      /* Z = Z * X */   fp_mul(&z, &x, &z);   fp_montgomery_reduce(&z, modulus, mp);   /* T1 = T1 * X  */   fp_mul(&t1, &x, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* X = X * X */   fp_sqr(&x, &x);   fp_montgomery_reduce(&x, modulus, mp);   /* T2 = T2 * x */   fp_mul(&t2, &x, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T1 = T1 * X  */   fp_mul(&t1, &x, &t1);   fp_montgomery_reduce(&t1, modulus, mp);    /* X = Y*Y */   fp_sqr(&y, &x);   fp_montgomery_reduce(&x, modulus, mp);   /* X = X - T2 */   fp_sub(&x, &t2, &x);   if (fp_cmp_d(&x, 0) == FP_LT) {      fp_add(&x, modulus, &x);   }   /* T2 = T2 - X */   fp_sub(&t2, &x, &t2);   if (fp_cmp_d(&t2, 0) == FP_LT) {      fp_add(&t2, modulus, &t2);   }    /* T2 = T2 - X */   fp_sub(&t2, &x, &t2);   if (fp_cmp_d(&t2, 0) == FP_LT) {      fp_add(&t2, modulus, &t2);   }   /* T2 = T2 * Y */   fp_mul(&t2, &y, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* Y = T2 - T1 */   fp_sub(&t2, &t1, &y);   if (fp_cmp_d(&y, 0) == FP_LT) {      fp_add(&y, modulus, &y);   }   /* Y = Y/2 */   if (fp_isodd(&y)) {      fp_add(&y, modulus, &y);   }   fp_div_2(&y, &y);   fp_copy(&x, R->x);   fp_copy(&y, R->y);   fp_copy(&z, R->z);      return CRYPT_OK;}#endifconst ltc_math_descriptor tfm_desc = {   "TomsFastMath",   (int)DIGIT_BIT,   &init,   &init_copy,   &deinit,   &neg,   &copy,   &set_int,   &get_int,   &get_digit,   &get_digit_count,   &compare,   &compare_d,   &count_bits,   &twoexpt,   &read_radix,   &write_radix,   &unsigned_size,   &unsigned_write,   &unsigned_read,   &add,   &addi,   &sub,   &subi,   &mul,   &muli,   &sqr,   &divide,   &div_2,   &modi,   &gcd,   &lcm,   &mulmod,   &invmod,   &montgomery_setup,   &montgomery_normalization,   &montgomery_reduce,   &montgomery_deinit,   &exptmod,   &isprime,#ifdef MECC   &ltc_ecc_mulmod,#ifdef MECC_ACCEL   &tfm_ecc_projective_add_point,   &tfm_ecc_projective_dbl_point,#else   &ltc_ecc_projective_add_point,   &ltc_ecc_projective_dbl_point,#endif   &ltc_ecc_map,#else   NULL, NULL, NULL, NULL,#endif#ifdef MRSA   &rsa_make_key,   &rsa_exptmod,#else   NULL, NULL#endif   };#endif/* $Source: /cvs/libtom/libtomcrypt/src/math/tfm_desc.c,v $ *//* $Revision: 1.18 $ *//* $Date: 2006/03/31 14:15:35 $ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -