📄 mmc.c
字号:
// mmc.c : MultiMediaCard functions: init, read, write ...// Works also with SC cars. Modes: SPI mode.//// Rolf Freitag 5/2003///* See also:http://www.sandisk.com/pdf/oem/ProdManualSDCardv1.9.pdf Sandisk SD card product manualhttp://www.sandisk.com/pdf/oem/ProdManualminiSDv1.1.pdf MiniSD cardhttp://www.sandisk.com/download/Product%20Manuals/Product%20ManualSDCardv1.7.pdf Older SD cardhttp://www.compile-it.com/support/crndatasheets/MMC%20ADAPTER.pdf*//* * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 44): * Rolf Freitag (webmaster at true-random.com) wrote this file. * As long as you retain this notice you can do whatever * the LGPL (Lesser GNU public License) allows with this stuff. * If you think this stuff is worth it, you can send me money via * paypal or if we met some day you can buy me a beer in return. * ---------------------------------------------------------------------------- */// MMC Lib#ifndef _MMCLIB_C#define _MMCLIB_C//---------------------------------------------------------------------#include "mmc.h"#include "led.h"#include "MSP430x14x.H"#include "math.h"#include "string.h"char mmcGetResponse(void);char mmcGetXXResponse(const char resp);char mmcCheckBusy(void);void initSPI (void);unsigned char spiSendByte(const unsigned char data);char mmc_buffer[512] = // Buffer for mmc i/o for data and registers{ 0};extern char card_state; // 0 for no card found, 1 for card found (init successfull)//---------------------------------------------------------------------// setup usart1 in spi modevoid initSPI (void){ ME2 |= USPIE1; // Enable USART1 SPI mode UTCTL1 = CKPH | SSEL1 | SSEL0 | STC; // SMCLK, 3-pin mode, clock idle low, data valid on rising edge, UCLK delayed UBR01 = 0x02; // 0x02: UCLK/2 (4 MHz), works also with 3 and 4 UBR11 = 0x00; // -"- UMCTL1 = 0x00; // no modulation UCTL1 = CHAR | SYNC | MM; // 8-bit SPI Master **SWRST** P5SEL |= 0x0E; // P5.1-3 SPI option select P5DIR |= 0x01; // P5.0 output direction P5OUT = 0xff; while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready (empty)? // debug_printf("init......SPI");}// Initialisierenchar initMMC (void){ //raise SS and MOSI for 80 clock cycles //SendByte(0xff) 10 times with SS high //RAISE SS int i; char response=0x01; // debug_printf("Start iniMMC......"); initSPI(); //initialization sequence on PowerUp CS_HIGH(); for(i=0;i<=9;i++) spiSendByte(0xff); CS_LOW(); //Send Command 0 to put MMC in SPI mode mmcSendCmd(0x00,0,0x95); //Now wait for READY RESPONSE if(mmcGetResponse()!=0x01); // debug_printf("no responce"); while(response==0x01) { // debug_printf("Sending Command 1"); CS_HIGH(); spiSendByte(0xff); CS_LOW(); mmcSendCmd(0x01,0x00,0xff); response=mmcGetResponse(); } CS_HIGH(); spiSendByte(0xff); // debug_printf("MMC INITIALIZED AND SET TO SPI MODE PROPERLY."); return MMC_SUCCESS;}// Ti added mmc Get Responcechar mmcGetResponse(void){ //Response comes 1-8bytes after command //the first bit will be a 0 //followed by an error code //data will be 0xff until response int i=0; char response; while(i<=64) { response=spiSendByte(0xff); if(response==0x00)break; if(response==0x01)break; i++; } return response;}char mmcGetXXResponse(const char resp){ //Response comes 1-8bytes after command //the first bit will be a 0 //followed by an error code //data will be 0xff until response int i=0; char response; while(i<=500) { response=spiSendByte(0xff); if(response==resp)break; i++; } return response;}char mmcCheckBusy(void){ //Response comes 1-8bytes after command //the first bit will be a 0 //followed by an error code //data will be 0xff until response int i=0; char response; char rvalue; while(i<=64) { response=spiSendByte(0xff); response &= 0x1f; switch(response) { case 0x05: rvalue=MMC_SUCCESS;break; case 0x0b: return(MMC_CRC_ERROR); case 0x0d: return(MMC_WRITE_ERROR); default: rvalue = MMC_OTHER_ERROR; break; } if(rvalue==MMC_SUCCESS)break; i++; } i=0; do { response=spiSendByte(0xff); i++; }while(response==0); return response;}// The card will respond with a standard response token followed by a data// block suffixed with a 16 bit CRC.// Ti Modification: long int -> long ; int -> longchar mmcReadBlock(const unsigned long address, const unsigned long count){ unsigned long i = 0; char rvalue = MMC_RESPONSE_ERROR; // Set the block length to read if (mmcSetBlockLength (count) == MMC_SUCCESS) // block length could be set { // SS = LOW (on) CS_LOW (); // send read command MMC_READ_SINGLE_BLOCK=CMD17 mmcSendCmd (17,address, 0xFF); // Send 8 Clock pulses of delay, check if the MMC acknowledged the read block command // it will do this by sending an affirmative response // in the R1 format (0x00 is no errors) if (mmcGetResponse() == 0x00) { // now look for the data token to signify the start of // the data if (mmcGetXXResponse(MMC_START_DATA_BLOCK_TOKEN) == MMC_START_DATA_BLOCK_TOKEN) { // clock the actual data transfer and receive the bytes; spi_read automatically finds the Data Block for (i = 0; i < 512; i++) mmc_buffer[i] = spiSendByte(0xff); // is executed with card inserted // get CRC bytes (not really needed by us, but required by MMC) spiSendByte(0xff); spiSendByte(0xff); rvalue = MMC_SUCCESS; } else { // the data token was never received rvalue = MMC_DATA_TOKEN_ERROR; // 3 } } else { // the MMC never acknowledge the read command rvalue = MMC_RESPONSE_ERROR; // 2 } } else { rvalue = MMC_BLOCK_SET_ERROR; // 1 } CS_HIGH (); spiSendByte(0xff); return rvalue;} // mmc_read_block//---------------------------------------------------------------------// Ti Modification: long int -> longchar mmcWriteBlock (const unsigned long address){ unsigned long i = 0; char rvalue = MMC_RESPONSE_ERROR; // MMC_SUCCESS; char c = 0x00; // Set the block length to read if (mmcSetBlockLength (512) == MMC_SUCCESS) // block length could be set { // SS = LOW (on) CS_LOW (); // send write command mmcSendCmd (24,address, 0xFF); // check if the MMC acknowledged the write block command // it will do this by sending an affirmative response // in the R1 format (0x00 is no errors) if (mmcGetXXResponse(MMC_R1_RESPONSE) == MMC_R1_RESPONSE) { spiSendByte(0xff); // send the data token to signify the start of the data spiSendByte(0xfe); // clock the actual data transfer and transmitt the bytes for (i = 0; i < 512; i++) spiSendByte(mmc_buffer[i]); // mmc_buffer[i]; Test: i & 0xff // put CRC bytes (not really needed by us, but required by MMC) spiSendByte(0xff); spiSendByte(0xff); // read the data response xxx0<status>1 : status 010: Data accected, status 101: Data // rejected due to a crc error, status 110: Data rejected due to a Write error. mmcCheckBusy(); } else { // the MMC never acknowledge the write command rvalue = MMC_RESPONSE_ERROR; // 2 } } else { rvalue = MMC_BLOCK_SET_ERROR; // 1 } // give the MMC the required clocks to finish up what ever it needs to do // for (i = 0; i < 9; ++i) // spiSendByte(0xff); CS_HIGH (); // Send 8 Clock pulses of delay. spiSendByte(0xff); return rvalue;} // mmc_write_block//---------------------------------------------------------------------void mmcSendCmd (const char cmd, unsigned long data, const char crc){ char frame[6]; char temp; int i; frame[0]=(cmd|0x40); for(i=3;i>=0;i--) { temp=(char)(data>>(8*i)); frame[4-i]=(temp); } frame[5]=(crc); for(i=0;i<6;i++) spiSendByte(frame[i]);}//--------------- set blocklength 2^n ------------------------------------------------------// Ti Modification: long int-> longchar mmcSetBlockLength (const unsigned long blocklength){ char rValue = MMC_TIMEOUT_ERROR; char i = 0; // SS = LOW (on) CS_LOW (); // Set the block length to read //MMC_SET_BLOCKLEN =CMD16 mmcSendCmd(16, blocklength, 0xFF); // get response from MMC - make sure that its 0x00 (R1 ok response format) if(mmcGetResponse()!=0x00); CS_HIGH (); // Send 8 Clock pulses of delay. spiSendByte(0xff); return MMC_SUCCESS;} // block_length//TI added substitution routine for spi_read and spi_writeunsigned char spiSendByte(const unsigned char data){ while ((IFG2&UTXIFG1) ==0); // wait while not ready / for RX TXBUF1 = data; // write while ((IFG2 & URXIFG1)==0); // wait for RX buffer (full) return (RXBUF1);}// Reading the contents of the CSD and CID registers in SPI mode is a simple// read-block transaction.char mmcReadRegister (const char cmd_register, const unsigned char length){ char uc = 0; char rvalue = MMC_TIMEOUT_ERROR; // char i = 0; if (mmcSetBlockLength (length) == MMC_SUCCESS) { CS_LOW (); // CRC not used: 0xff as last byte mmcSendCmd(cmd_register, 0x000000, 0xff); // wait for response // in the R1 format (0x00 is no errors) if (mmcGetResponse() == 0x00) { if (mmcGetXXResponse(0xfe)== 0xfe) for (uc = 0; uc < length; uc++) mmc_buffer[uc] = spiSendByte(0xff); // get CRC bytes (not really needed by us, but required by MMC) spiSendByte(0xff); spiSendByte(0xff); } else rvalue = MMC_RESPONSE_ERROR; // CS = HIGH (off) CS_HIGH (); // Send 8 Clock pulses of delay. spiSendByte(0xff); } CS_HIGH (); return rvalue;} // mmc_read_register//---------------------------------------------------------------------#endif /* _MMCLIB_C */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -