⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 initialize_variables.html

📁 多目标优化进化算法目前公认效果收敛性最好的算法NSGA2源码
💻 HTML
字号:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">
   <head>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
   
      <!--
This HTML is auto-generated from an M-file.
To make changes, update the M-file and republish this document.
      -->
      <title>function f = initialize_variables(N,problem)</title>
      <meta name="generator" content="MATLAB 7.0">
      <meta name="date" content="2006-03-07">
      <meta name="m-file" content="initialize_variables"><style>
body {
  background-color: white;
  margin:10px;
}
h1 {
  color: #990000; 
  font-size: x-large;
}
h2 {
  color: #990000;
  font-size: medium;
}
p.footer {
  text-align: right;
  font-size: xx-small;
  font-weight: lighter;
  font-style: italic;
  color: gray;
}

pre.codeinput {
  margin-left: 30px;
}

span.keyword {color: #0000FF}
span.comment {color: #228B22}
span.string {color: #A020F0}
span.untermstring {color: #B20000}
span.syscmd {color: #B28C00}

pre.showbuttons {
  margin-left: 30px;
  border: solid black 2px;
  padding: 4px;
  background: #EBEFF3;
}

pre.codeoutput {
  color: gray;
  font-style: italic;
}
pre.error {
  color: red;
}

/* Make the text shrink to fit narrow windows, but not stretch too far in 
wide windows.  On Gecko-based browsers, the shrink-to-fit doesn't work. */ 
p,h1,h2,div {
  /* for MATLAB's browser */
  width: 600px;
  /* for Mozilla, but the "width" tag overrides it anyway */
  max-width: 600px;
  /* for IE */
  width:expression(document.body.clientWidth > 620 ? "600px": "auto" );
}

    </style></head>
   <body>
      <h1>function f = initialize_variables(N,problem)</h1><pre class="codeinput"><span class="comment">% function f = initialize_variables(N,problem)</span>
<span class="comment">% N - Population size</span>
<span class="comment">% problem - takes integer values 1 and 2 where,</span>
<span class="comment">%           '1' for MOP1</span>
<span class="comment">%           '2' for MOP2</span>
<span class="comment">%</span>
<span class="comment">% This function initializes the population with N individuals and each</span>
<span class="comment">% individual having M decision variables based on the selected problem.</span>
<span class="comment">% M = 6 for problem MOP1 and M = 12 for problem MOP2. The objective space</span>
<span class="comment">% for MOP1 is 2 dimensional while for MOP2 is 3 dimensional.</span>

<span class="comment">% Both the MOP's has 0 to 1 as its range for all the decision variables.</span>
min = 0;
max = 1;
<span class="keyword">switch</span> problem
    <span class="keyword">case</span> 1
        M = 6;
        K = 8;
    <span class="keyword">case</span> 2
        M = 12;
        K = 15;
<span class="keyword">end</span>
<span class="keyword">for</span> i = 1 : N
    <span class="comment">% Initialize the decision variables</span>
    <span class="keyword">for</span> j = 1 : M
        f(i,j) = rand(1); <span class="comment">% i.e f(i,j) = min + (max - min)*rand(1);</span>
    <span class="keyword">end</span>
    <span class="comment">% Evaluate the objective function</span>
    f(i,M + 1: K) = evaluate_objective(f(i,:),problem);
<span class="keyword">end</span>
</pre<p class="footer"><br>
         Published with MATLAB&reg; 7.0<br></p>
      <!--
##### SOURCE BEGIN #####
%% function f = initialize_variables(N,problem)

% function f = initialize_variables(N,problem)
% N - Population size
% problem - takes integer values 1 and 2 where,
%           '1' for MOP1
%           '2' for MOP2
%
% This function initializes the population with N individuals and each
% individual having M decision variables based on the selected problem. 
% M = 6 for problem MOP1 and M = 12 for problem MOP2. The objective space
% for MOP1 is 2 dimensional while for MOP2 is 3 dimensional.

% Both the MOP's has 0 to 1 as its range for all the decision variables. 
min = 0;
max = 1;
switch problem
    case 1
        M = 6;
        K = 8;
    case 2
        M = 12;
        K = 15;
end
for i = 1 : N
    % Initialize the decision variables
    for j = 1 : M
        f(i,j) = rand(1); % i.e f(i,j) = min + (max - min)*rand(1);
    end
    % Evaluate the objective function
    f(i,M + 1: K) = evaluate_objective(f(i,:),problem);
end
##### SOURCE END #####
-->
   </body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -