📄 gtm_pmn.m
字号:
function means = gtm_pmn(T, X, FI, W, b)
% Calculates the posterior mean projection of data into the latent space.
%
% The posterior mean projection of a point from the target
% space, t, is the mean of the correspondig posterior
% distribution induced in the latent space.
%
% Synopsis: means = gtm_pmn(T, X, FI, W, b)
%
% Arguments: T - data points representing the distribution
% in the target space. N-by-D
%
% X - data points forming a latent variable sample
% of the distribution in the latent space.
% K-by-L
%
% FI - activations of the basis functions when
% fed X; K-by-(M+1)
%
% W - a matrix of trained weights
%
% b - the trained value for beta
%
% Return: means - the posterior means in latent space. N-by-L
%
% See also: gtm_ppd, gtm_pmd
%
% Version: The GTM Toolbox v1.0 beta
%
% Copyright: The GTM Toolbox is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% licence.txt, included with the GTM Toolbox, for details.
%
% (C) Copyright Markus Svensen, 1996
D = length(T(1,:));
DIST = gtm_dist(T, FI*W, 0);
[err, R] = gtm_resp(DIST, b, D);
means = R'*X;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -