📄 contents.m
字号:
% Generative Topographic Mapping (GTM) Toolbox.
%
% Functions for setting up initial GTM models:
% Automated set-up:
% gtm_stp1 setup 1D - generates the components of a GTM with a
% 1-dimensional latent space
% gtm_stp2 setup 2D - generates the components of a GTM with a
% 2-dimensional latent space
% Latent variables and basis functions:
% gtm_hxg hexagonal grid - produces a 2D grid with points arranged
% in a hexagonal lattice
% gtm_rctg rectangular grid - produces a 2D grid with points arranged
% in a rectangular lattice
% gtm_m2r mesh to rows - converts from a mesh-matrix to vector
% representation
% gtm_gbf Gaussian basis functions - calculates the output of Gaussian
% basis functions for a given set of input
% gtm_lbf linear basis functions - calculates the output of linear
% basis functions for a given set of input
% Initial weights and beta:
% gtm_pci principal components initialisation - returns a weight
% matrix initialised using principal components
% gtm_ri random initialisation - returns an initial random weight matrix
% gtm_bi beta initialisation - calculate an initial value for beta
% Auxiliary functions for set-up:
% gtm_pca principal components analysis - calculates the principal
% components of a data set
%
% Functions for training:
% Automated training:
% gtm_trn train - optimize (train) the parameters of a GTM model,
% using an EM algorithm
% Auxiliary functions for training:
% gtm_dist distances - calculate the squared distances between
% two sets of data points
% gtm_dstg distances - calculate the squared distances between
% two sets of data points; uses global variables
% gtm_resp responsabilities - calculate log-likelihood and component
% responsabilities over a Gaussian mixture
% gtm_rspg responsabilities - calculate log-likelihood and component re-
% sponsabilities over a Gaussian mixture; uses global variables
% gtm_sort sorts the columns of argument matrix R in increasing order
%
% Functions for visualisation and demonstration:
% Posterior latent distribution:
% gtm_ppd posterior probability distribution - posterior distribution
% over the latent space posterior for a given data point
% Posterior mean projection:
% gtm_pmn posterior mean - calculates the posterior mean projection of
% data into the latent space.
% Posterior mode projection:
% gtm_pmd posterior mean - calculates the posterior mode projection of
% data into the latent space.
% Auxiliary functions for visualisation:
% gtm_r2m rows to mesh - converts data from column vector to
% mesh-matrix representation
% Demo:
% gtm_demo demo - demonstrates the GTM with a 2D target space and
% a 1D latent space
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -