📄 gtm_pca.m
字号:
function [eVts, eVls] = gtm_pca(T)
% Calculates the principal components of a data set.
%
% The principal components equals the eigenvectors of
% the covariance matrix of the data..
%
% Synopsis: [eVts, eVls] = gtm_pca(T)
%
% Arguments: T - the data set for which the principal components
% are to be calculated. Every row is assumed to
% be a data point; N-by-D
%
% Return: eVts - an D-by-D matrix in which each column is a
% unit length eigenvector of the covariance matrix
% of the data, sorted in descending order w.r.t.
% the corresponding eigenvalues
%
% eVls - a D-dimensional vector holding the eigen-
% values of the covariance matrix of the data,
% sorted in descending order
%
% Version: The GTM Toolbox v1.0 beta
%
% Copyright: The GTM Toolbox is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% licence.txt, included with the GTM Toolbox, for details.
%
% (C) Copyright Markus Svensen, 1996
[eigenVectors eigenValues] = eig(cov(T));
% sorting eigenvalues in ASCENDING order, keeping track of the
% re-ordering permutations
[eigenValues perm] = sort(diag(eigenValues));
[rowsEig colsEig] = size(eigenVectors);
% (re-)sort eigenvalues and eigenvectors in DESCENDING order w.r.t.
% the eigenvalues
for i=1:colsEig
eVts(:,i) = eigenVectors(:,perm(colsEig+1-i)); % sorting "backwards"
eVls(i) = eigenValues(colsEig+1-i); % eigenValues is now sorted
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -