📄 logistic regression 1st lecture.mht
字号:
aWOJDe11U01JTtSllBdR6ZOVTGZIYEWG5fSlRGuCqd6bLWGImJxkmRnnnXLSSSdDZE7k4Ghq/dka
S2rtViihKDkoqEl5BnpocH26KemkdFFq6aVmRapbdSBx+uiFfjKpoJiYUqRpqVCaWWSoqFbY6qv+
sGZ0aqy0Sjrrh7Xm2uGtERn3VUJaKfQrQsE+NSxVYWF0LJrLdpXsVaL6qOJMLbY5Y0ZCkroSrxBp
qyuHhHn707TftmUto0ayJW6t5waWrl3lgtQuXuuWxC2K8aLpYb0k3RttvgvNWxq/Z5ELcFSTEizS
j3F+2m25Ao+ncEgMX4lqxBJODJK/qU2KcY0afyRihiQ/uOPHUobsEcOqvikhypeqvBHHybUHM6wy
V+oboibrdnO5Octqkae9lvbzwQpKiyNkRyMt37v4gsrqXE07/S92NK/6lNWbBY1R1riSVDXXUELd
2EZjky2S1xeB3SNRat/HtkVuPy1s3CbO/Zf+wWnjzZfZgPqtpN6mGiz4joRPlPWiSQskVsAIKyWV
V9Bm5/jdlhOL8ObXXq7Yln/D6ShLe6K36OmNc3RkvaWPxjrrRwLOaMuJltw6uiS3hiepedJe0u65
E1f34cS7WvzxCQ5PHqKEVidow8xD/yjqf/YkvafVpyc1z8wfKn2h1kdPtvLIl7+t+egrnf76kLLv
vm5uK2f7/PTXb//9+Oev//789+///wAMIABlZyiT9G1F4LoWlzRSuRJRjnNRw5rhOAQXNWEOgmAh
SNMWWEENYssrCswcUsQSocRJhHzbK8kBzYUTESaQM5dzin9MGBEUpu59NgmddmzoMBx2zi/+NAzN
BH0IN8gEcTFDJCJXNHNEh/Cwe0q8IIAImKgoAmtTVDxJE6s1oSyiK4orDMkW+ZRE84WRJGNcyBPT
iJ0zatGLvzPjidjYm9gRz43w2mEZD4bHpalPXWTrI73giEakCXIwdERIxRj3MIihKpEHWaOuDjkZ
SBqEZcHjSawo2TVC8qdUnByYJ8/Uw6u5KZSxsWRBKnbDCCoJlbxRJUEkSSRYdvGPPCmZy7hIPFkO
BJO3c2WCbNkeXwpkZKQs2jDZZ8wBAHNo/yFmh5pJS+1Ic46jFONzrgmybIKKkcI0mhXRo8edtdKU
phln2MppR81wM2HePKcmJ/NOS1ETmt/+UyZh6lmqe/oRNuoMUzzX0rO08LNW/mynTw76rYQCciUM
zZdD8ziSiCJtou46UEADx86Hom2jHpXgPy1i0cNh9GxYASkQ4ykjiJQUfSflqBRVuh2WAmmmNFVM
TAeFpZwy0aZlw6BPO4nLjA7VPUC12FFFWVSULpWpHaWo57L0Qoi+b6cFjJxQ2VOVuzHlilNFigev
uEBljfUwoBtkU7UJRURtpYNLTNtLbxmq8HEvUHtiJOPsqkZ1CfCvgA2sYAdL2MIaNphBzdRTF7sy
eIkLeryDrKH0NFlw8kdRpXzNExnLvs1yNn2e/az5Qita5JG2tMU7rV+3d6fpNW9UsJ3+k6rClz3w
jW5012Mt6WzL29fSVnx8dZpq49KyRpWFr/J7beow29rc7tZ5RHMYci9EWdI9r2HBRdpwUeu37XI3
bt797vjES15Flve8s0SvesOr3nyxt73lAhti4TverMqTvjyNahyTKbY2VtVLmVtTmkBYwqRihEpz
DWsGRZikrgp4qx4slj5FqlCXutCBEJ4qXBVswM1VsFk0CQuIqergEYrYKeFs30gtzOGxdhWsGYbg
Brn04a/qxcYAdhwIwXJiFKNTeHtsoc+kaMELwzCGRr7gWzMo4Ubq16kqpJG10spirBB4ahQOKXnd
iNUqlrePXX6jeA8Z5i+ilpNl3q/+aFGZ5kJ+1pZt/iRjiRnntc15imvN71DfWWe2+pSffe7Un3ET
6BHR1KKFbmlAX5rom6ozwY1OrBITnFneVNOHlL4v/IKMvEyn8DmXXp+ntfdkmaJv1PxtTqg7PU0D
C1SO+3I1NFmNzTzb12+o7pitvSy4XP9YxRUO5JRkbU61+XrCoOb0JMEUaaXyUVLNPrDTjj3rUuvZ
kfYEaqN2uWxMNVqyWM4VtSWd7KH5zsnselWkdRnuV43b0LvWWrXdjVCbzgdW77ZzvD/E7nmCEmja
PneKwZRvNWfZ32399ZIKbuaD53K+NfOY09Zd6YgTnGvf/vTApay2dQtc4SdiuFH+HY7ugnLcbxmX
9sl66WrmNPPILN83yNfpIZGr1dq3jiZMWRpddOs8fYUmKLfXY/OaypycCZ85cYpudJzzejxM1ymx
h96cqOPH3s5euhW/3W9k88bqyzu6fPLp8/5sNOOW1fWQQepxiMsbNWCHKskb6fLYxB01Ka84zdN5
1LbX3TN3J3TAP25xenI27/P+nGi5nkmvQ6i0fjd5fbiLdr2/zS+B1w7FCf92qpU30T3f+ELRG/RU
K51apOe5xkXfYfhG+9VmyXzGpt5u1OP39YlvPX41jZtVV3T3pge2ljUKfFLP/dryKr7dnC5m4ivf
+OUONgOff/noD9+s1K++qpX+/d/s8z42vs+x9/e+/RWLf/zkB7L5q4z+zqtf+lRt/+lRE36cyj/9
wpcq5O5f9vdfX6z853j5N3KaE4AIZ33611MGyHqaVUayFy+4V2xntYC1N4BQFmMUqHbHV0APOHG0
p0kdaDURSHUZKIEISIAlmHv+l4ApWIGWxn0t6H4WaGox6IKbtn412H8ziHyn0YPCcVUf6HU+CGOc
s0FAKHb6pmM+Riw4xmNNiCwNpEEjpoRLyCxPWB9XyIIvqEXnNhRUVoAxJkMbtmFhOIH6kmR38YU4
mBqcVyd51Tv10xCL00M9QTlVKIVRCIUBc4dOOGB56CV8iIWBiILfYSfPI1v+dqUonKInmTGHbRUd
kqGGueE+f4ddd2U3h3hdludMMAiAhkeJclYlfvU6q0Vc//d0J5iDnUVcbidGtgMojTc7Xfc787Mb
9FN+KLUu1VU7lyiLvTg7v1hImJV09OdYubiJQDJblYWMV7KLuINbuKiK7/Ne0mgi1FiNu4KN06iN
7nON3Pgf3viN7RGO4hiE5Ygq5CgbbYh0lzeLSeMapBE8syEXL6cZ6ehnjWOJv5WIzriIcNg8xfU9
rSU++QiQrmVd3lNds7WOunKP6uhazuM90WMnUiM/25ZbwZWIUCSP7ziRsfWOFMmMseKQ8MZb21aQ
B3mSBMlcvQVZyUWQnzZJXRAJXDzjXFZDkoNTeDqoRDh5jlvok8fTk0AJfkMZlAJwlEiZlEq5lEzZ
lE75lFAZlVI5lVRZlVZ5lViZlVq5lVzZlV75lVAZEAA7
------=_NextPart_000_001C_01C00ACA.318D76C0
Content-Type: image/gif
Content-Transfer-Encoding: base64
Content-Location: http://hobbes.uvm.edu/gradstat/psych341/lectures/Logistic%20Regression/censor.gif
R0lGODdhTAJMAvcAAP////D/8O/v7/Dw8ODv4O/w76CvoGBgYK+wr19fX7CwsA8QDxAQED8/P4CA
gAAAAG9vb4+Pjw8ADw8PDxAPEKCgoHB/cJCQkHBwcJ+gn09PT2BvYC8vL+Dg4C8gLyAfIB8gHx8f
H19gX6+vr1BPUFBQUE9QT29wb4CPgJ+fn4+Qj39/f8DAwFBfUL/Avz9AP5CfkM/Pz7+/v0BAQN/g
39/f38DPwCAvICAgINDf0DAwMH+Af7C/sDAvMNDQ0EA/QC8wL8/Qz0BPQB8QHzA/MKCfoBAfED8w
P2BfYH9wf3BvcF9QXwAPAG9gb4B/gE9ATwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBa
QAAQW0AAfO5WADLR978EFLGBWPRWAPT0VgB0WkAAnAAAAD8AsYF07lYAAAIAAJwAAABY9FYAAAAA
AIjuVgAAAgAApO5WAJ3X838AAAAAvO5WAHikZoFwWkAAkHyfyrzuVgD+oPe/F7P3vwAAQAAAAAAA
TQAAAHRaQAAs8lYAcFpAAADwVgDbFPN/AABAAAAAAAB0WkAACBXzfwzQ/X90WkAAMSDzf3RaQAAn
3vN/dFpAAFj0VgAAAAAATgAAAEM6XFdFQlNIQVJFXFdXV1JPT1RcZ3JhZI/wVgAAAACAOP/3v4/w
VgBMUFQAAwAAAAAAAAABAAAABgQAAP////9AAAAADABAAAAAQABwWkAAAAAAAAAAAAB4pGaBDABA
AJB8n8qA71YA/qD3v1il978AAEAAAAAAANxZQAAk8FYA6u9WAJgLboEDAAAAAAAAAMjvVgAUAAAA
IAAAAHjcaYGRo/e/AKBggZjcaYEUAAAAAAAAAAygYIEAoGCBeNxpgSH5BAAAAAAALAAAAABMAkwC
AAj/AAEIHEiwoMGDCA8GGLhQ4MKHABomnEixosWLGC0+DLCxY0KIICNG5DjSI0SHJVOSLBhSIkqT
JDmaFHlSIc2VNiXWdElTJMKdPoOiHJqzJ8+XPQnKVBlzZcOWH5vCVMpQaNWQE3UG5an1p9GqVLEW
hUrWatikY9FmXMu2rdu3cN8ulRnzJt25X+fSZTqypFS7e1sGHgzyr+C7gQHfRdt1q+LEjSMzRFwX
L+W8hA37tfx4seXERJ96NorYcWiwWykXXg25c+XXHQ2rxqx6ZtzbuHPr3j0ZZk2DZfVOTe2baF6W
TItzPnq1rlfjjrUyR8r1Kmqvq41DDSt749nfyIWr/zR9/fhzq9LLAyft0OX2tOLjT3+/Xjzv+/jz
608+Pjht/mR1d5x/8s1EIGkHSnYadQOSp2CDCf5XYH8QAqjZgtFVKNaDkkXooYYgfnjgfiSWaOJF
n8V22WGQSaWiby4GuGKMFLI22os3otbhZq1huGOOOFbWmV2b1egajLY5aGRtOjZ52ooIlsYikIQR
WZuQQSJ54pZcdtneeNippdNwLJHp3lcKmTkZmjk5B99HbIY5nXnwNUZnmXxpF2d4TV1HX3hqAQre
d2ZZ552eYtV3k45kClroS316Kemk9wHJ43KXYrlklJYyOWVrWdImJVj2STcqVqWSCqWNoGYq46lH
iv+6l2nCEQiaT6kONdunmHrKaau+storTpQWa6xbepknmJguglmrdZih+Syii6IKmLN7EoplenPS
d9Ky1hbGbGykRotqs9QO+lRS2/2pLYPmssteuH752Sy93p1L7rH89qvRZYYCTJ3AQqn4HcHCnhnk
waUF3PDAD0srpmsML+awxRBj/CuxCVfsJnARs/ronZCGTPHFs+5kG68K84jryP7GbOxR+QZarc2H
ZtVXopBmW7O6O+McNNCa8mlzzzzfTLS7P5vVNM1DOx011EWfBS13Pk9dH9NaG53001tn/bHMZB9L
8MYtz/Zlc0uh3HbGs8L9NtprLuw2xynF2fHdaSP/fHLJftstN944RmWy4HTz7fHcew/et8llRz5z
oP69Cx5zlzdoOXqaG7pn5Z7znLSjonfOYOllbV5d6qHD7Pnmt7F+OuWdAwXdiK2vLvnu/g5aVEW+
Kwq860gNP6fVFAUPqPEaEX+08Mk7rzzyOh9/dfXNW1989No/vzz32fMuPqWokww6dNvPnrnsFapO
Ou3sj+7+/LlzHr/p7devu7ut06++/ebD3/ny9z/dje+AXOpe+uBkp+9hj3kQBB/6rsdAm1CvghF8
oASRc8EwZRBOKJKeCLs3PQp6cIMaRKAK9yM/kr3rgy98k5xGxr/ZzbBbGKmhC/snwx4qSnktJNQM
tXOjwyKyKT23e98QnbTCJuJmfzQMkRTv10Ijvqc62+PWFCsoIg42qYFVzBYPC3hEMWaRi1EMoxq9
Z0U2mnGHTowjWxoYwySe8YxgVM8Ylcgb6yGRj+fBYaU+t0fk2Y6JP0yjG9cIxDe2sZGMdJ4cJxnC
Or4vQmQsHyQXyZirYVF/BLwkiKD3SaDgMJJQBJ0RqXJDNJ6Sk5uMpSJlqUBK2lKPyGKiH3UZl1om
EJc55OUtlTTBYRr/00u+POYTt9hFUzLzmR/yES+bCU0pSlOa1MxmNbXJTWJ6U4vdDCcc9fOAByjz
l3DhkB7VWUwnPiiX7SxWMtdzTW/u5p28m2fzMNSlcp7zROIM6DYHekh1CvSg35wmQV25UIRGM6HY
bKhEg4gff/6TRK+kJQjDp9FWetSHgHQU9joKUkua9HclLSRKE5nRWbq0pTBl6Am3ZNGLstCRA83k
KN+EOUKyspNC3ClLRbnLOyKSj1AcaTVPqlP20ROoX0ypU1WqUy7V1Kb66SlF/5jK8vyRqePUZwQL
itOvvm6ZW/VeUEtJHnil9Ke+o+gcYXm0R0I1nvm5KlYHicotug93/0PVal3bmqENhdKSA4SrFw/5
0a62sotg1WYgF0tYx4ryo4FVa0XNudesAvBP+BwgWbvqzPvFTqSFEu1RdTjX+HEWtAEMbShVac+z
EjG2uIUtYzVLTs529qYkfGZT4cdRFFY2oeB84wUT69XaBlcivoVeZq84wvBVEny7fK51jTtTSen1
t30kqgUztFbO8XO2AlymIT2ZXtmWMCOJfS0hDcvWJFIxt/MNoA1B6T/03ref0QUvX4uLSVCWj3nZ
HW/m7Gvg7ZIxhUqqZU0C3MEGOxOGK93o8EKo3acusLsgBrCAB4xZ9v7UrU8yIQ8te8+NJjiuxz2x
btwl30gqNo+RLf+jUc/T4r6WWLFAtiqFR3xbH781rGWla0xPuOQjt7GdVqRBAnYw5P0O9cdUHSeK
v9fkKzs5ye/dLJF7LNMjbznHRvaymkOKZiWX2csxmAYDauxmLFuZzVm2a5fxfGewinjM4U0zau2M
ZEG3+cUvfTNl98zKIEwDB1UudJ2/HMYPR5XQ1D10or30XUB7+tMrjHMPIo0fOqq3tuBlp5BBnc6J
5s+hru7mcGFN23A6es6xznWBH0snWutaqCbqNKuHTeyYxRkEpC62sncj7GXzGqF//bWvqTttv7q6
BsQIgT+rze3qsq7as5boeHnTbGcH09DNxTSYN83dPK8b0epOWpwPdVBOdPfZ3ZUmsIvZvWZN/7/y
z+a+7miXKu59/4jffLZtSJPKU2A/1QbTAMK2KRvtbysadtF79mHrZ8e7FvxE5Q44fM176c/GGKph
HnmmFe5vNCq1qAgHwLxDzl4c05XQKuekpVlbavKSnKbJFvnJw61bgq/3xu++eCcZjb+KIxklEB+1
by9sYR03197jFi9z98vVRX882EEXOoJ9nkfDHj21ktRwe9eu0fX9/NURvqxAgqBtmtfTqG4vOs9f
Trs7b92B/sUtwMWe9d0SvbBG9+KOVRxUCCP9gzsaO7XVbgN6T7zjh/+k4zOsM8lvPJFjjSo1V014
uejX525dMNnTzuNemzzviYa9jJmrRYxLuf+cdkc5yU19370z1O3n/XsuDYh61ucm9yJX/XTZLlyv
B9nSjceg1zuseN7utIQPiQHua1r7qpuW8+BvvcZ9j/3da/3zvS296c3u8fqWXKz7TMvsk+z51je5
6y0ViPa3n/OOU73fWZZzJAWA0pVwvgd26oddMYdvk0aAxddy8daABqhZAbB/uKd09xZ9OSaAv+dw
jKdgcTd6QJeA4Sdp5TeAE4h1eqZ2TJeBJhgRHXAA20dnKAiBZnZuFAhMB4iDnedxI0iCEViDDCiE
KRaEC+iCEGEDCNCCygUAEDeDGLhDhpdwHBhTuwZ4pFR9svaDQNiFt5QCB+AlcQaFJIhP/aL/avD3
FsgXcN2WXG1YRm9Ya1sEAwcAbcfBAtMAhXFoTVrWgSKYhScobdbHbGHnhYa4O2DYJTQAAXV3gYf4
iACwhub2hpn3a5UIa5UIAxtghy0BcUSgh1/ndPRlfJfYdDXnOnuYdbohiaW3gvYXha5IaRKogWwW
A1QWhliHPHg4gw+QZtxHECGnRrzIi5FYiKvkPPVGir2UboN4H6y4bGZViqMIWcy4W30lWOUHZU0I
ERdAbxvgZYCFHDSAAcNocomUjDxhUYI2jFDYaSo4EXqVVv13gyXyjAmofKsXQ2yFjTPmekiYg2uU
EClQTriYgzuHJmNIjNt1Es/Ic+lIYbkXi4sIkYzIRH+kB4ma93WSxWXT52b8KEiz2EkXQJDgiH4L
wQKNyH94lBYU6XJm9l3xmHTiB4wBlobt5oIgV4iGeGDHxX54J39rIXuvl1+IxpNUEQMJQJLfZ1ZQ
0QEYgGwKOXZDcXk0KRD+5IhGgXvEZ5UQaU6O+BBX2YsicYEQoY5cWRAXaFH1ppWeFWT/W3mRkAiQ
BLeRwYdcHbh5mCd9TxUAF5CHD/CN0meUBgFxKUmWJUcoLVmVxRiVi8l/xwOT5ciVjhiZAaBXNcWO
kkmGPUd9k2KP6reUFDSKbjloPLhiiKdJCiiYKNGXSimFq/UVuxiZoecQwqaWl2lOYImbxehhu4mW
E4eOX1mMuTmWNfabvjWZtwlQazd4XoiPokiU1vZ4r2mFN8ly4CcdMOCXYRiYxIUQTsmOU2edIYGO
vsmVDMlZlplskFmewjkQ6RkR79mb7omeAeaZ1VlhcNmFRNiH79ifIfmPMvYurPkA2/mCp2QD4EmD
L1Wb9Mme4EkR60kT23ZVE7cQyfie/5VZn/TpEvbZFjtIIh2qbKYmjd4Hd9KZXP2FWKSpog4xkgRJ
nSzWAQmqmylWWu35kGepmA9qM+sJXRtKnOWZoT1xoRqao/OZH1uYk3HJdzY3cIs3osq4SQeZb/XX
PC5KoHvkfsBBABAwo/AEn+F5pPKZo6wYobTZoGIqpma5m0Kqo2I5nPJEWFy4k3J6fr03lyZ2dcQl
kRzXQ1oRAy2Ae5voh3zkAjMaprUzpG/qoEVqpGN6EGZKpo06psBJkbeJpmkqKX9nkxOpk0uKhusk
THVaImZINgMqiVBKEON4qF+aoeVom+zZmFiZEJHam+mpmbKKlZj5qCFqSxbqqZMoev8FJ1D1dHDd
VqPNtxCnuqgCtYiHiqgf8qCwqpjzWYi1Oq2+WWVpKZbVaquTSj596IzA+qmiynvlOjl45S/LGkzn
paoYUJi7OnLt2lnxuTupuh+9ymrGKogiCKp7aKPUKBEXIHFsKVDP6pjCGo6/lZz5FK7kNq5lGHf+
51Ptt6LrZ352xXchFgQJ0AAI20h4dbAqKZXARK+M2bCc6hb56mn+uZ982nIfCYtllZ0cMLJDKBIy
KrIxaWOeNqvik7JwsbLF9rLM6IDH6LJixAJYeLMC65eGGYjM0QEr4LQHm4sZwQNAS6dZixFCO2Yt
i3ZEy3UpWLEgAZhGO7Mn+4I0YAHY0wCvXqppS4pOlNK1IwZ7qFk60adaoHm3e8omBep3zPcQOZCU
oMg/ZTGOVCuydypXcUtinAaxzhZmkltdGFaAIQZ6DGS2erm5BtGXN4CrlnsQa5u4Isu5qogRQdC4
QWksdCtgdtu3eKtwent6egedYvG3+MW3AZCdxDhVUIG4bvusi9uMqtuPW3sRrUtkk8uZelq5HHm5
z6sQLJACM+C8+DkQKkC6eDkQiKuzafuBAVq8/5S8v4W0aWW+/2mgAHAAL1CTMlkUQXAAn6uZbUQD
3rurelZu5HuI//cqZnT6jxv5UGGbqCc6EDEwA1d1hfoYEcvKlvOXRfcbrwDIEfoLueK7tPVowUOr
aPuIUtYogShqvAfglyCIcyKhApAWlSknEAQQwZSZZAOAABXgs916wXK0v1gVwss3u7gzwCv3wQQh
AiRcdY0FADkgg8MoWLdDACvgwt+7XwWgACNQARpAuNqKw1rrXRr8iKC6l6K6QiPsjiUblA1MwxfB
xE78xAkxACOQARJADAkAppB5q5A6q2E5ZGZsw3GBxReVivyaUxDlGEL8XQ5VAweQwrzIfo2BAGnc
uxVSAAiQAhOgASJQljQ8srKZq9WKq6BLeCt8fFsMajapapM1r/9fuiUHYHkUt0xvuxY528g2u8ZT
rAHEIAJgEZZVybDyiZz0eZy+nKlid7xcG8os+8f/Csj+CgAiQMMI5QNIzI4/zL1NDMsf+xUCgAAZ
AMfHsZbRhcu8esWO6q3E7LXKGLTjLKJiBMS0O6pMa7oZccA+m5GPdKWYKVeMTM3blyhsXAEmMKgb
MqFoapuZLKvhfKnnXL7lbM78+75n+7VMaEVhLGwOaTPOmqBqJgBUhs/xDAAF4AIjMAMtUEFEKqmZ
qZnIWdAaetCfvEIrfRt8XLcMnXGyiL5QOxAJ4LQYvI0RsYiIXM9uNAIanc+TIQMj8ANxPEYGraaR
RqGYGs5OHcz/j7vQDt1w6gZ96osdEV1l5GcVEfCsmDsQ9xzUvtXRBjADcbxJlqqrv6zUNRyfujxV
xSzMEHrQyjuUr1vT/eW7gTtYIWHFD0AAPKyFALCIpOvIsAXUYt2LA0DUM1DJdg2mDMHUm6zWrzqp
9NuEN0U2Le3SdA1oy+tg7pzT1zva4CsQzxx0ny0QNQABha3GaoHYYu0CFWDWoj2fPkqtkmkQKunN
mbrRO7jZBwTcatjZrvvYpIWKsJvcMXvXYEsTOSAEsVy7Mrbawbt9NZtesB3UL7CdugtAczVI6dqW
mirTcyrVoB1ibwm9Z1aCpH3TsczeX7HarT3Q1QcAYR3UoU3a/xUJ156d0PonAHMH4Enz0v9E08ht
4Bo701ntvlQaFIv4AQh8sCqV3RpNizhZmqcVjSYi3KfVg26RAxzAAgshAgYA4IhJ3AjN31uosK65
EKlrceiWAD39fOy8EB1wAvcLU4Yq1hwAh+lLqi61YTZlkzXAAdPgAgPRAC4w4Che3DHbgzAWzQFJ
EzrAYNRZo6dtwU3ZpfdLVQog1lVunf8T3qHbaoxLZnJ9XfihAxwABEHQEAdQAQNw4ua9glfI4oYr
Ej0O47NIAxrQyfiXEDfuwnxH4bC850v3454lS9bL0phNEQ2gtASRAw0gA/DY5Kk2xqVcp6TsoQIR
5qaMG+793hhv0QFcHsHxFwAy0NOwrAP9K9MS1nNkjtD/oW4ROmADIDEDOBADZUHgyuTH3Ybo3JYA
UMnMCgURi2gETiwiCDDf9yvsoXifqcmHM1mlk8LiF5EAIxAEMeADMRAELRADc83Fmg7r5V7r+5QD
MdDj7CxwBuHnro0Rpj4EadwWq+7sOhvmo3zueoxMIgAEC/BoQMDrDeLrx3TM1Wbk02DMADDqpB6C
IlHR9b5Fq+6x1JxrTHqx1GjC/K2cwncREDAD4g5EBj9MD/3o2phmPaADDADAchkADv+0dGXIFx9J
LmB5sAylGevB/n1UvInm6PqArdVDJW/yLa7cqyeHm1Sz0L6pZlQDGsDq3IqxBuEA+JxZRNHsNW+K
VVXb/xxowhV2jNeO8hZRA99+9t4+AN1S9L4K8f+me7G73v/jAzUL6jVOsUgR83nMRQSwAVdv1SBR
ADHAuzmvg3jvbT0PoPoG9hiV3xWhA4/G5mxOAZb+Hmzf9nne3WWXqGpk5A+AA9TOZ3q/pj4oEDGo
0cctEAIQAymgA0CgA1Lf5U5Pe4l/1fF3tnF65hbRADfw5iIhAgR/OZff9tE2mgu8Xt3t+RMQUXlN
EzQgBIW9ugFAAAuexgVKbYKfAUCAAQ/BArGvs0XIX6XvZ6SpWhyWu7U/fN7tFreeYE/9mfxp3Keo
137k+aDP5xi2BK3tXgMxtQDxQOBAggUNHgSQUOHCAP8AAhSIESSFDggLE7LA0eDgRoMOPTZM2BCk
RZIiP3okGRLlSoYsU7YcGdOiyZcwFdK86bLmzpwjef7seRInUIsNWAQ16dOhQKJNnT6FGtWpTKpC
XeKsqjKpVZtbu67kMO3BhJZar1r1mrMGxwdPG9LYEILtXIRfBQSJwAAIhq0iMdLdqKOq0r5cc0JN
azax1KaFh6LVyfOx1MJlpSZAEFFzkAIzVzJlHFr0aNKOJZ81rfJrZc9KS3IQyAFy1tOuE7BVvXLy
CrGAfbd9KSAGCgY6MByeaQPHb4Ky005Omdqz5ZKRbVqmTRQraqCuo1tnbNo70RpApp1Hz2IxANCk
3b//h1+TcOuT1WVS1z19tvyTsB/ouK6+79ZLiAYhltsIqg4OYM43zwgI4gIdeuALqfpYaFAgwfIb
D7LcHuuQNfsEHBE6xAwrEbwARyNQNB1CAAGHGD/A4aiv2osvRx3fE5E+EwUMEUUfI6PBP+fA63E1
AjSYC0QLLcgQMIsGqCGFDyBIsicMG5RtpxY9RO7DyLLELj/8vARTMSS7UzEq8RgzakjXcNyxTjt/
+pLMNL/LLcUOtQorNj/5M4skYqZhALfVSIpSSoVouACHioK8L6EMAdxz0ZcqRfPHL+3UU7pOSzPs
T6J0sMHTnOi8s1VXByRRTv6es1BVAm/obZpYNeWu/6EONOiNI1sdKqBRuh6q8oPjap11Kea6hHVY
6LYbdVozkaO2NiFDZdPUE0V9qoERfOrAVFZfRTddde0M9AFodezAhGA5egoDY+eCFIdl3bPhN0zX
BZjUPnX01k1s3TJJh2lGoKGGhhuQYb9zA6aYsv3exPjajDe26gYQBNKVY45/9Y21vla4ly0QLBD5
YodsCEGjuY6ktWVa1bTZ5Yzx1LnnPNf8EedMm2ogBBxoRNoGniauuGmnnS6SoB1JdtApFFKmt04W
pvlhrn+fBjtssXcyIYidPWJ6bLVzZvssodn2byCfSz3p13mbnBvrjdp+k4UQdJh5br63FbzwT5kd
fDzYUavdLzQCHB5g15vSVjvsIAuNts0zmd00v7hB4xY6u5kbOiS9Efo5dQBg9lp1ad1qNmiCw8y8
4OrQ5Ln/Utm7K0DhaXgQAHH2gKu8eOG3I7CvyGMHkvPWPm/Lux4LEwDYBt+2yt7TpZaVY5JcuLsg
mksHczDaeR2088M3F1p9yVfMnHHbgRpABwYWuJ8BBdy2lHjjK8+Wmtz3mOXxqXbNUgn0vuI+sxRA
XhS4HvKw5YDtSe1wtBmMDSbAlg1hDn382x3Q3ke+qQjpg+lSnFR0QAEbJUQD+zMN5f7XtLNlqS/+
G5TuTOgRAShQeoQzSQGslyHseQVlFcSh4d63paw5L30c2mH7DjjAxojwdaa6orZCSJQZHCUpM4jY
fAIgwxlWTIxOpJulThOg6dUHesB50wIBIMTwOUiHNtnB/wYr2LiDDUxNLEhUE8/nskUVbDHgAtXB
zqgn9g2JivCLSgFcowEbFYaMZQTY2SCZHwEksUwBDEp1EGRBbdmEjsYqooDyuEfmadIiLlAUGhl4
rUZuckQ8047mRmhL/eCyW++B2EcKEDwRXRKTKAyl8Ao5R7Ewb5lnTEgB3rjMANFxAajMlgR5sz0+
lglzfdGgIDnVM2/2Coh7iqPBwJXOxZVyismMygwkwINhFqABDHABs4x5THS50oPY6sAGcZdG+pTk
Bqhzp0oEIIRpQBCVc1OIAyTAzVYS8iVbI0JdZAkrMfHSo/AklSF1GcLLDXKW6lTIDBhAgZXiM1Yg
2Sc/X/81H+x1LiQDOI8n8WM+VY2SeydUCB0D+dDm7XQHFB0aKEdkg+Jo1KQbleITperIkI6QkSD9
ZEXjg0H9xFSmd6JpURWZkwJMQ6CEGuvAsvJG4im1J8Cq4/XEKqaGbFNvoOTqTnPCApkVpJdQVGsy
/ZlUcsKubY/kaGLnd9UdefWrj3WIWXW6I7ZOFigziKtco8KbHVAQa+mywTT6Krd+0jKKfAxrCfX6
TagaELE5fGpTiDCNFsZJsMODLA1vm9XARlOyuaNdXhVCr7BmawbbK25+MHAeB8D0s2kFoWlHsrV5
TQMI0E3uOHkqORt2E6U5e21BFVvF9fGkAdNQmkJ+0ML/lzg2t/wMQE7R5VO/xpOVROHNNBxgEb2p
i68F+dp7BTxgM4Gxj7glsLruqLEDj6QAevTlgu9I358umCFCYOWClzuNCFQKaxJu8CBjEtqCXLej
DD6xDhNnUYuteLD/BGoqt0gU29bEvQk2Hk5v/BQcZDYqT8hslH6y3Aj8xAFBnot/w7cuCxsskSmO
rcDCE2WgECFVNzGwDneMY4tB2cu6wSmE0QriE1OYlF9uyHErqMMTnKfIpk3IDpCcNTKjGMUxyOmZ
7Vzn7bp4l+RVYstOKisqIpJo6E3pNPK5ky1zOWxl7Y2rzPzTpmAWiSmBwHkuAJUjC1ldMQAcpZl8
WsY6//mdU2URoAf9lAIQYQItnYYCIhdDyzoaPt4jbADCnDbpbHe4Sf6hV9ScYYdggAITQIEAOpO8
jwTArqTrXmFHxAIm+JWdhIZiOkOny1zWjMWthTG4yzcaZZdbkvxDsK1bhVerWqWsYnYttksS6lhG
0QRIZEpDTsAACURAAAFQ8a6cPWdr/1m4IsLzRAeSHTRmN7hU/vO31jjX04aGUi/9K+wsooF80lrd
6y5sdx8iWcv2mnM9kFKwTzLsPSqBAhcQgABmneuPDODZjnrmt20SWiCQ0tBSHOctuV0nk0lb3Fm8
uFsTepJlo6bRH88lG8/pYJJPnLWJoXeSWczy7THgAiEFmHlg2RkAOf/Gu00uYsK5F/RvlzfcIG/j
id8e76hjfJ3/Q1/IDPCHP5aylAUaiJjQng71ior8OwJggB5LbiE/fqTndtTWC/D9gH/jmoEB8CzO
D3jtTYEv1OMrtdLHXNrb7ZY7wLW4eLUL558UoHfoQQ8DFF3MWhPesM1bpN2FOY1rMu2QjatsgpSZ
EK6fTqwSTBLZId9duh5vddMIdQel23bbV98p9TS3src7+I/r1PJY5WF9bUrQlkRQW8XCt4zbhJUB
dFrrhdZ5dPD8+fgLfX615JF+GB7wurez9D9sPvxrrNqzPhtbFx0jrfggoqcovueyExXIM0FCFzzr
jQCjmBnLEcPrLbACv6hyD68APH0iwAJMCe8zOqADAAGYl4FC/yQO6D3SkRZLW7PCgb8CcD9hKbwT
vIn5E5TvizG0mqmH4y10s7opG0KHk4oZ6DtYcwGT4T51m6yDI7U5SjxRk6MSCT6t87WgasB7MSBr
+b1ouppYijvoWpTQEq3/KCfY6hPxgw/QYBorBJgnrBgdkAFzO6/Agww65LKJ8cHyKSuH4rXhAwAP
wCYrAgAZPB3w2jwAiAC8gb8/VAkZoD9J3EPhMyAykpsEXIgEWSz9Yz2GWLgiXMPoYjuoGACfGIAG
WLSO4kMc870Qg4p3k0M0WwgPIDhMdIoB6MJGkUW8OwzMqzc2kTuiCIJgQbun4MThqT1NBI5z4cRl
TJdXDJi+yP+ySyTBp2CBa4rEQCMWxfPDuRkqIbMZDEMub9wYCNQeg/AzjiExd0FHtIDGZiRAOPQk
0EGbB5AdQZOMfJuydoSPF2CvD6HGAZuAZmJBiEuJAmApN2SMSfsNDJyj+/oy1fKICJgGheuIukvG
msCzDcKUU5y4Mao1OmEKSotGp+oferzH9mgIgSBJlJDGX8ORZTxJ/7m/LxwNldq7+2GCMMLGbGyK
NARI01BBcDTBjIFIs8sZ9LureMSY9psGCDiIonSZ0IIN0ItHyjHJtuCeutBFmtQpjapKZxlFlVxJ
fWTGn3JIq5QKiMG+YWKwmBRKosjItsK4q4udshrHKEQrEMj/RUXhFuKLwEPcwJ8zkwuYhhNAKDAU
QlnCs2oLyb8SOa7EIXv8tczsn81sL4dsj88kHtD0H9DsTM1Mt5kUGxoYD9YoSAHLqaRDRNcogBAQ
RNS8QgBol5RZTRRJgA+YgBToRbM7NXmzCAFwAKRklW17HayExx9kzZK8zGeUTv6aznTrzATsyuGJ
Ccw0Tc4UxerUzHBUzlCUOE9pzfeSLw90Th4iuVqsjb58KD1pARyYgAqogQAwRy+8oCncCghszNjU
KoZQgAn4G9dBEsukTs7MTgS7JNKamAWtybBU0Oj0ztKbqtRCDGJAmhpxnvPMrdcM0KkSgB6DT/lZ
CPMwvkLr/80RgJyEEADJ88LhdE7FRMvBbLekOMZpeBfyec6loVAG/VHuBAohTdBOBM+1dEhnqVAg
7Ub4azynIAYJmAYDaBhiAIErAxEPtRzZcsmz89KRk1DxComse643IQb6NICmEwkCSBm6yb3f2wob
/E84RSc+GgAaUIANYba7m0frZFI/5c4+LdLshNDRHEEi/dP/0QEEuM+E6IBgChAt3VJTGQI1E6lL
XQgBCAH4HMRCQbnTYZKfsFIWpYHOSAk2JSoEWjqSuAC0/Ki5u44g2NFXJRGbFFIHDc1cDc+WNFRd
9U7SXNIILQlgPc0k8jbUA0aLMAFZOwnVPCRJfRrbmQYYdd6+nGsJAvCxxnsM5GxTyDABHEAAGigg
x0BVcsS9aHtTh2jVjri7dt0TUDO8uGsi4cNV8UNUsUTJjURSYk1L1AQdsvRLJ7m2nFwIIhjIWYLW
aG2TabDUX0JWAsCB2nTDiwMATo3RjTsaBbjP3SGA4JTAxPK/lFjXJP2o8qIJWVXVkO3XErzJ7rTV
JaXOB53HH41Z+ehKmmW8iKO4p4iXGLCIFsBSnUhY3QKKNPSk8VSKEbVYyhmKLPTFhTABEJgAhgm7
2hEAzDICaDND4uyKAdAopA1RAAA1AQrbusykDhz/tyc9FQ4AAh1oWw4wgOC5kRE8Jixa2IZlxBJR
waVVy6IzCW5t04ZoAR2ozxhIRe9iiBp4gWlYyvpitxSilpEdxSYlTscIgCDQvSwy227TWeDSXMqo
gbBAjwpQU6GlWwKT1gmAjcd0zKGQJiTDLpSQve1ZXQAghvrkDPJ0jBpQRLr4x84FAMnt0jDMWfub
PqRTyM39QP4E3sbIgc0w1SGZvOml3uq13uvF3uzV3u09R4LNxlLzXAAVDYLl3vI13/NF3/RV3/VN
UeVVsPFN3kb0uLHpSIj7ERmY1qUYP6kgACBggH6EigmI3qEzCROYAAMIAn0UmRoo3Rw4t4bIgSAQ
/wDenYYKEAoa0IwH2AwC8IgaCILN0AwCMAka+OAS1owOCAkCAOEShpIUFAjNiAHNUE2PgJAYduCI
yAFhigEGDoIcjtMg8AFvhC3vJUHwdb7DOpGoGNoZosQaUCMLjQoC6AEGCOKlgQoGmFUo5QAFMNwx
qsgqUgjeHQFGCxgYOACYHb0ktrMuS1b3TbCcWWKioCBtzTiQtQgemAGRMEHG8F8fwKLTTYiDFECF
0IBFzd2XhMrZSAAQ4IHCQBk+g6hruQCqRDCrBMghdmMtAl5L9qXmy5M4Boo5Tj29SgoZmIHhOjBP
rg8C4IApruLfi560dYggEOC5EwkTAAIeiAGQgP+pYkS1k6gBDQABBXCNDgBkI7aIFGgCr8RL2ITN
IzTC5s1kibTbPSVGhwC4rYCAIIYAn5UiUEYTCnLmsk2IGACCPF6Kcd4UApgtBlCP2FFLJ2WABigg
MCGGGRgBFyjdlxzg9VyMQ7HgrbgaJ3UmWLmAj/FTHmXez/3lTAbC32VozrUICPgBl4oBEfDZEAFn
nhBlhd7Hk+ABIvBm9mitwqgBREkvD8RLonCBeT7c8UiAGUAAGQA4oVXPknYIH5iBXCYJBvHo9UMR
GGgmf4xof77RdktLhw6vpcZpuw2JbPYI37GRGDiAjDaMje4ccSbnmwYAGXiBj4jn+KmJDiAGGQj/
2gEK63QN5GmQW6u453yuZ6sI2KOmlgSo4K3waRnNtmZZ14QGW4KmplMLU+UlYq4VtwM6gAqQASDo
OAAQyGcFZFcxgAvo6IE9164wZ3RG5FT6ikcNAXPaipUWU4dggQl4gX0mhh9QAJqOIzj60jptCB/Q
AA6gaZTwacv+aMcQamZ+7TZyV99Gp5SM7OozWdg2bokOgDipMQOL1OG+ExTAAK1GVpUFAB7IX9PB
VJJ41CGopJEKa/8r7Rlo62KQaX1mEwIkqchYggrOCRGovfQuGBp4gDMexOxeVTtG2CTC6knVWYrV
5H0sDBs4AB9gxWJbgCZ8qf0miUes7N4GqVLW/wGzQZtqDQoaKJqzdj7Rhh+/oIB/u+fV9onW5mwK
V4wcmIEKoInbdnATNYmW/e2pg3E6nR7bXFCaZFlevXFGAedPBO67Q24A0AHC1YEGUMIL4ODmVpur
ke77FjqFiAEOOOXJESmSsPAQSOn+TuuUTYh5Lu+ZEyn0HilaSgDaVom8pm5okgwY4G0tXzX8Pr2E
ksMaB1h71VckNVLbzEASEqHwBXCuiAEZYIGwuAAXIKZdUXCLWI6Olrrx+xHrPuUW1+sq32W6nnDq
1gDMOg8RFl9jXeg1sesMQIkcwCEb5fPgXfOfLuqmfp86l3NfLVbTJNZbdW4pK3XApgxe/ggWGP+B
ts7EWd8RjHyAR9RAiqMKGeAA9hqjm6mVHGBcTE6KvvWZBNAAAxgBBBgBBhACueWWWB7n1SuUGDhx
lVABaLdEkVFz7aRM0yPbhjbu58TOIKVQQoV3/V5ixFRbsMWibMZ1AFiBKgYADCAGzDWRQ1cIYH/E
h5PIlAiCBhCC0B4v
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -