📄 op_helper.c
字号:
oldreg = env->immuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 1: // Not in I-MMU case 2: case 7: case 8: return; case 3: // SFSR if ((T1 & 1) == 0) T1 = 0; // Clear SFSR break; case 5: // TSB access case 6: // Tag access default: break; } env->immuregs[reg] = T1;#ifdef DEBUG_MMU if (oldreg != env->immuregs[reg]) { printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); } dump_mmu(env);#endif return; } case 0x54: // I-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x40) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } } // error state? return; } case 0x55: // I-MMU data access { unsigned int i = (T0 >> 3) & 0x3f; env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } case 0x57: // I-MMU demap // XXX return; case 0x58: // D-MMU regs { int reg = (T0 >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 3: // SFSR if ((T1 & 1) == 0) { T1 = 0; // Clear SFSR, Fault address env->dmmuregs[4] = 0; } env->dmmuregs[reg] = T1; break; case 1: // Primary context case 2: // Secondary context case 5: // TSB access case 6: // Tag access case 7: // Virtual Watchpoint case 8: // Physical Watchpoint default: break; } env->dmmuregs[reg] = T1;#ifdef DEBUG_MMU if (oldreg != env->dmmuregs[reg]) { printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); } dump_mmu(env);#endif return; } case 0x5c: // D-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x40) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } } // error state? return; } case 0x5d: // D-MMU data access { unsigned int i = (T0 >> 3) & 0x3f; env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } case 0x5f: // D-MMU demap case 0x49: // Interrupt data receive // XXX return; case 0x51: // I-MMU 8k TSB pointer, RO case 0x52: // I-MMU 64k TSB pointer, RO case 0x56: // I-MMU tag read, RO case 0x59: // D-MMU 8k TSB pointer, RO case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5b: // D-MMU data pointer, RO case 0x5e: // D-MMU tag read, RO case 0x48: // Interrupt dispatch, RO case 0x7f: // Incoming interrupt vector, RO case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: return; }}#endif#endif /* !CONFIG_USER_ONLY */#ifndef TARGET_SPARC64void helper_rett(){ unsigned int cwp; env->psret = 1; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps;}#endifvoid helper_ldfsr(void){ int rnd_mode; switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status);}void helper_debug(){ env->exception_index = EXCP_DEBUG; cpu_loop_exit();}#ifndef TARGET_SPARC64void do_wrpsr(){ PUT_PSR(env, T0);}void do_rdpsr(){ T0 = GET_PSR(env);}#elsevoid do_popc(){ T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL); T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL); T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL); T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL); T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL); T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);}static inline uint64_t *get_gregset(uint64_t pstate){ switch (pstate) { default: case 0: return env->bgregs; case PS_AG: return env->agregs; case PS_MG: return env->mgregs; case PS_IG: return env->igregs; }}void do_wrpstate(){ uint64_t new_pstate, pstate_regs, new_pstate_regs; uint64_t *src, *dst; new_pstate = T0 & 0xf3f; pstate_regs = env->pstate & 0xc01; new_pstate_regs = new_pstate & 0xc01; if (new_pstate_regs != pstate_regs) { // Switch global register bank src = get_gregset(new_pstate_regs); dst = get_gregset(pstate_regs); memcpy32(dst, env->gregs); memcpy32(env->gregs, src); } env->pstate = new_pstate;}void do_done(void){ env->tl--; env->pc = env->tnpc[env->tl]; env->npc = env->tnpc[env->tl] + 4; PUT_CCR(env, env->tstate[env->tl] >> 32); env->asi = (env->tstate[env->tl] >> 24) & 0xff; env->pstate = (env->tstate[env->tl] >> 8) & 0xfff; set_cwp(env->tstate[env->tl] & 0xff);}void do_retry(void){ env->tl--; env->pc = env->tpc[env->tl]; env->npc = env->tnpc[env->tl]; PUT_CCR(env, env->tstate[env->tl] >> 32); env->asi = (env->tstate[env->tl] >> 24) & 0xff; env->pstate = (env->tstate[env->tl] >> 8) & 0xfff; set_cwp(env->tstate[env->tl] & 0xff);}#endifvoid set_cwp(int new_cwp){ /* put the modified wrap registers at their proper location */ if (env->cwp == (NWINDOWS - 1)) memcpy32(env->regbase, env->regbase + NWINDOWS * 16); env->cwp = new_cwp; /* put the wrap registers at their temporary location */ if (new_cwp == (NWINDOWS - 1)) memcpy32(env->regbase + NWINDOWS * 16, env->regbase); env->regwptr = env->regbase + (new_cwp * 16); REGWPTR = env->regwptr;}void cpu_set_cwp(CPUState *env1, int new_cwp){ CPUState *saved_env;#ifdef reg_REGWPTR target_ulong *saved_regwptr;#endif saved_env = env;#ifdef reg_REGWPTR saved_regwptr = REGWPTR;#endif env = env1; set_cwp(new_cwp); env = saved_env;#ifdef reg_REGWPTR REGWPTR = saved_regwptr;#endif}#ifdef TARGET_SPARC64void do_interrupt(int intno){#ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n", count, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0);#if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); }#endif count++; }#endif#if !defined(CONFIG_USER_ONLY) if (env->tl == MAXTL) { cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); return; }#endif env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) | ((env->pstate & 0xfff) << 8) | (env->cwp & 0xff); env->tpc[env->tl] = env->pc; env->tnpc[env->tl] = env->npc; env->tt[env->tl] = intno; env->pstate = PS_PEF | PS_PRIV | PS_AG; env->tbr &= ~0x7fffULL; env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); if (env->tl < MAXTL - 1) { env->tl++; } else { env->pstate |= PS_RED; if (env->tl != MAXTL) env->tl++; } env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0;}#elsevoid do_interrupt(int intno){ int cwp;#ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n", count, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0);#if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); }#endif count++; }#endif#if !defined(CONFIG_USER_ONLY) if (env->psret == 0) { cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); return; }#endif env->psret = 0; cwp = (env->cwp - 1) & (NWINDOWS - 1); set_cwp(cwp); env->regwptr[9] = env->pc; env->regwptr[10] = env->npc; env->psrps = env->psrs; env->psrs = 1; env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0;}#endif#if !defined(CONFIG_USER_ONLY) #define MMUSUFFIX _mmu#define GETPC() (__builtin_return_address(0))#define SHIFT 0#include "softmmu_template.h"#define SHIFT 1#include "softmmu_template.h"#define SHIFT 2#include "softmmu_template.h"#define SHIFT 3#include "softmmu_template.h"/* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) *//* XXX: fix it to restore all registers */void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr){ TranslationBlock *tb; int ret; unsigned long pc; CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, (void *)T2); } } cpu_loop_exit(); } env = saved_env;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -