⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 word-redblack-map.sml

📁 这是我们参加06年全国开源软件的竞赛作品
💻 SML
字号:
(* word-redblack-map.sml * * COPYRIGHT (c) 2000 Bell Labs, Lucent Technologies. * * This code is based on Chris Okasaki's implementation of * red-black trees.  The linear-time tree construction code is * based on the paper "Constructing red-black trees" by Hinze, * and the delete function is based on the description in Cormen, * Leiserson, and Rivest. * * A red-black tree should satisfy the following two invariants: * *   Red Invariant: each red node has a black parent. * *   Black Condition: each path from the root to an empty node has the *     same number of black nodes (the tree's black height). * * The Red condition implies that the root is always black and the Black * condition implies that any node with only one child will be black and * its child will be a red leaf. *)structure WordRedBlackMap :> ORD_MAP where type Key.ord_key = word =  struct    structure Key =      struct	type ord_key = word	val compare = Word.compare      end    datatype color = R | B    and 'a tree      = E      | T of (color * 'a tree * word * 'a * 'a tree)    datatype 'a map = MAP of (int * 'a tree)    fun isEmpty (MAP(_, E)) = true      | isEmpty _ = false    val empty = MAP(0, E)    fun singleton (xk, x) = MAP(1, T(R, E, xk, x, E))    fun insert (MAP(nItems, m), xk, x) = let	  val nItems' = ref nItems	  fun ins E = (nItems' := nItems+1; T(R, E, xk, x, E))            | ins (s as T(color, a, yk, y, b)) =		if (xk < yk)		  then (case a		     of T(R, c, zk, z, d) =>			  if (xk < zk)			    then (case ins c			       of T(R, e, wk, w, f) =>				    T(R, T(B,e,wk,w,f), zk, z, T(B,d,yk,y,b))                		| c => T(B, T(R,c,zk,z,d), yk, y, b)			      (* end case *))			  else if (xk = yk)			    then T(color, T(R, c, zk, x, d), yk, y, b)			    else (case ins d			       of T(R, e, wk, w, f) =>				    T(R, T(B,c,zk,z,e), wk, w, T(B,f,yk,y,b))                		| d => T(B, T(R,c,zk,z,d), yk, y, b)			      (* end case *))		      | _ => T(B, ins a, yk, y, b)		    (* end case *))		else if (xk = yk)		  then T(color, a, yk, x, b)		  else (case b		     of T(R, c, zk, z, d) =>			  if (xk < zk)			    then (case ins c			       of T(R, e, wk, w, f) =>				    T(R, T(B,a,yk,y,e), wk, w, T(B,f,zk,z,d))				| c => T(B, a, yk, y, T(R,c,zk,z,d))			      (* end case *))			  else if (xk = zk)			    then T(color, a, yk, y, T(R, c, zk, x, d))			    else (case ins d			       of T(R, e, wk, w, f) =>				    T(R, T(B,a,yk,y,c), zk, z, T(B,e,wk,w,f))				| d => T(B, a, yk, y, T(R,c,zk,z,d))			      (* end case *))		      | _ => T(B, a, yk, y, ins b)		    (* end case *))	  val m = ins m	  in	    MAP(!nItems', m)	  end    fun insert' ((xk, x), m) = insert (m, xk, x)  (* Is a key in the domain of the map? *)    fun inDomain (MAP(_, t), k) = let	  fun find' E = false	    | find' (T(_, a, yk, y, b)) =		(k = yk) orelse ((k < yk) andalso find' a) orelse (find' b)	  in	    find' t	  end  (* Look for an item, return NONE if the item doesn't exist *)    fun find (MAP(_, t), k) = let	  fun find' E = NONE	    | find' (T(_, a, yk, y, b)) =		if (k < yk)		  then  find' a		else if (k = yk)		  then SOME y		  else find' b	  in	    find' t	  end  (* Remove an item, returning new map and value removed.   * Raises LibBase.NotFound if not found.   *)    local      datatype 'a zipper	= TOP	| LEFT of (color * word * 'a * 'a tree * 'a zipper)	| RIGHT of (color * 'a tree * word * 'a * 'a zipper)    in    fun remove (MAP(nItems, t), k) = let	  fun zip (TOP, t) = t	    | zip (LEFT(color, xk, x, b, z), a) = zip(z, T(color, a, xk, x, b))	    | zip (RIGHT(color, a, xk, x, z), b) = zip(z, T(color, a, xk, x, b))	(* bbZip propagates a black deficit up the tree until either the top	 * is reached, or the deficit can be covered.  It returns a boolean	 * that is true if there is still a deficit and the zipped tree.	 *)	  fun bbZip (TOP, t) = (true, t)	    | bbZip (LEFT(B, xk, x, T(R, c, yk, y, d), z), a) = (* case 1L *)		bbZip (LEFT(R, xk, x, c, LEFT(B, yk, y, d, z)), a)	    | bbZip (LEFT(color, xk, x, T(B, T(R, c, yk, y, d), wk, w, e), z), a) =	      (* case 3L *)		bbZip (LEFT(color, xk, x, T(B, c, yk, y, T(R, d, wk, w, e)), z), a)	    | bbZip (LEFT(color, xk, x, T(B, c, yk, y, T(R, d, wk, w, e)), z), a) =	      (* case 4L *)		(false, zip (z, T(color, T(B, a, xk, x, c), yk, y, T(B, d, wk, w, e))))	    | bbZip (LEFT(R, xk, x, T(B, c, yk, y, d), z), a) = (* case 2L *)		(false, zip (z, T(B, a, xk, x, T(R, c, yk, y, d))))	    | bbZip (LEFT(B, xk, x, T(B, c, yk, y, d), z), a) = (* case 2L *)		bbZip (z, T(B, a, xk, x, T(R, c, yk, y, d)))	    | bbZip (RIGHT(color, T(R, c, yk, y, d), xk, x, z), b) = (* case 1R *)		bbZip (RIGHT(R, d, xk, x, RIGHT(B, c, yk, y, z)), b)	    | bbZip (RIGHT(color, T(B, T(R, c, wk, w, d), yk, y, e), xk, x, z), b) =	      (* case 3R *)		bbZip (RIGHT(color, T(B, c, wk, w, T(R, d, yk, y, e)), xk, x, z), b)	    | bbZip (RIGHT(color, T(B, c, yk, y, T(R, d, wk, w, e)), xk, x, z), b) =	      (* case 4R *)		(false, zip (z, T(color, c, yk, y, T(B, T(R, d, wk, w, e), xk, x, b))))	    | bbZip (RIGHT(R, T(B, c, yk, y, d), xk, x, z), b) = (* case 2R *)		(false, zip (z, T(B, T(R, c, yk, y, d), xk, x, b)))	    | bbZip (RIGHT(B, T(B, c, yk, y, d), xk, x, z), b) = (* case 2R *)		bbZip (z, T(B, T(R, c, yk, y, d), xk, x, b))	    | bbZip (z, t) = (false, zip(z, t))	  fun delMin (T(R, E, yk, y, b), z) = (yk, y, (false, zip(z, b)))	    | delMin (T(B, E, yk, y, b), z) = (yk, y, bbZip(z, b))	    | delMin (T(color, a, yk, y, b), z) = delMin(a, LEFT(color, yk, y, b, z))	    | delMin (E, _) = raise Match	  fun join (R, E, E, z) = zip(z, E)	    | join (_, a, E, z) = #2(bbZip(z, a))	(* color = black *)	    | join (_, E, b, z) = #2(bbZip(z, b))	(* color = black *)	    | join (color, a, b, z) = let		val (xk, x, (needB, b')) = delMin(b, TOP)		in		  if needB		    then #2(bbZip(z, T(color, a, xk, x, b')))		    else zip(z, T(color, a, xk, x, b'))		end	  fun del (E, z) = raise LibBase.NotFound	    | del (T(color, a, yk, y, b), z) =		if (k < yk)		  then del (a, LEFT(color, yk, y, b, z))		else if (k = yk)		  then (y, join (color, a, b, z))		  else del (b, RIGHT(color, a, yk, y, z))	  val (item, t) = del(t, TOP)	  in	    (MAP(nItems-1, t), item)	  end    end (* local *)  (* return the first item in the map (or NONE if it is empty) *)    fun first (MAP(_, t)) = let	  fun f E = NONE	    | f (T(_, E, _, x, _)) = SOME x	    | f (T(_, a, _, _, _)) = f a	  in	    f t	  end    fun firsti (MAP(_, t)) = let	  fun f E = NONE	    | f (T(_, E, xk, x, _)) = SOME(xk, x)	    | f (T(_, a, _, _, _)) = f a	  in	    f t	  end  (* Return the number of items in the map *)    fun numItems (MAP(n, _)) = n    fun foldl f = let	  fun foldf (E, accum) = accum	    | foldf (T(_, a, _, x, b), accum) =		foldf(b, f(x, foldf(a, accum)))	  in	    fn init => fn (MAP(_, m)) => foldf(m, init)	  end    fun foldli f = let	  fun foldf (E, accum) = accum	    | foldf (T(_, a, xk, x, b), accum) =		foldf(b, f(xk, x, foldf(a, accum)))	  in	    fn init => fn (MAP(_, m)) => foldf(m, init)	  end    fun foldr f = let	  fun foldf (E, accum) = accum	    | foldf (T(_, a, _, x, b), accum) =		foldf(a, f(x, foldf(b, accum)))	  in	    fn init => fn (MAP(_, m)) => foldf(m, init)	  end    fun foldri f = let	  fun foldf (E, accum) = accum	    | foldf (T(_, a, xk, x, b), accum) =		foldf(a, f(xk, x, foldf(b, accum)))	  in	    fn init => fn (MAP(_, m)) => foldf(m, init)	  end    fun listItems m = foldr (op ::) [] m    fun listItemsi m = foldri (fn (xk, x, l) => (xk, x)::l) [] m  (* return an ordered list of the keys in the map. *)    fun listKeys m = foldri (fn (k, _, l) => k::l) [] m  (* functions for walking the tree while keeping a stack of parents   * to be visited.   *)    fun next ((t as T(_, _, _, _, b))::rest) = (t, left(b, rest))      | next _ = (E, [])    and left (E, rest) = rest      | left (t as T(_, a, _, _, _), rest) = left(a, t::rest)    fun start m = left(m, [])  (* given an ordering on the map's range, return an ordering   * on the map.   *)    fun collate cmpRng = let	  fun cmp (t1, t2) = (case (next t1, next t2)		 of ((E, _), (E, _)) => EQUAL		  | ((E, _), _) => LESS		  | (_, (E, _)) => GREATER		  | ((T(_, _, xk, x, _), r1), (T(_, _, yk, y, _), r2)) =>		      if (xk = yk)			then (case cmpRng(x, y)			   of EQUAL => cmp (r1, r2)			    | order => order			  (* end case *))		      else if (xk < yk)			then LESS			else GREATER		(* end case *))	  in	    fn (MAP(_, m1), MAP(_, m2)) => cmp (start m1, start m2)	  end  (* support for constructing red-black trees in linear time from increasing   * ordered sequences (based on a description by R. Hinze).  Note that the   * elements in the digits are ordered with the largest on the left, whereas   * the elements of the trees are ordered with the largest on the right.   *)    datatype 'a digit      = ZERO      | ONE of (word * 'a * 'a tree * 'a digit)      | TWO of (word * 'a * 'a tree * word * 'a * 'a tree * 'a digit)  (* add an item that is guaranteed to be larger than any in l *)    fun addItem (ak, a, l) = let	  fun incr (ak, a, t, ZERO) = ONE(ak, a, t, ZERO)	    | incr (ak1, a1, t1, ONE(ak2, a2, t2, r)) =		TWO(ak1, a1, t1, ak2, a2, t2, r)	    | incr (ak1, a1, t1, TWO(ak2, a2, t2, ak3, a3, t3, r)) =		ONE(ak1, a1, t1, incr(ak2, a2, T(B, t3, ak3, a3, t2), r))	  in	    incr(ak, a, E, l)	  end  (* link the digits into a tree *)    fun linkAll t = let	  fun link (t, ZERO) = t	    | link (t1, ONE(ak, a, t2, r)) = link(T(B, t2, ak, a, t1), r)	    | link (t, TWO(ak1, a1, t1, ak2, a2, t2, r)) =		link(T(B, T(R, t2, ak2, a2, t1), ak1, a1, t), r)	  in	    link (E, t)	  end    local      fun wrap f (MAP(_, m1), MAP(_, m2)) = let	    val (n, result) = f (start m1, start m2, 0, ZERO)	    in	      MAP(n, linkAll result)	    end      fun ins ((E, _), n, result) = (n, result)	| ins ((T(_, _, xk, x, _), r), n, result) =	    ins(next r, n+1, addItem(xk, x, result))    in  (* return a map whose domain is the union of the domains of the two input   * maps, using the supplied function to define the map on elements that   * are in both domains.   *)    fun unionWith mergeFn = let	  fun union (t1, t2, n, result) = (case (next t1, next t2)		 of ((E, _), (E, _)) => (n, result)		  | ((E, _), t2) => ins(t2, n, result)		  | (t1, (E, _)) => ins(t1, n, result)		  | ((T(_, _, xk, x, _), r1), (T(_, _, yk, y, _), r2)) =>		      if (xk < yk)			then union (r1, t2, n+1, addItem(xk, x, result))		      else if (xk = yk)			then union (r1, r2, n+1, addItem(xk, mergeFn(x, y), result))			else union (t1, r2, n+1, addItem(yk, y, result))		(* end case *))	  in	    wrap union	  end    fun unionWithi mergeFn = let	  fun union (t1, t2, n, result) = (case (next t1, next t2)		 of ((E, _), (E, _)) => (n, result)		  | ((E, _), t2) => ins(t2, n, result)		  | (t1, (E, _)) => ins(t1, n, result)		  | ((T(_, _, xk, x, _), r1), (T(_, _, yk, y, _), r2)) =>		      if (xk < yk)			then union (r1, t2, n+1, addItem(xk, x, result))		      else if (xk = yk)			then			  union (r1, r2, n+1, addItem(xk, mergeFn(xk, x, y), result))			else union (t1, r2, n+1, addItem(yk, y, result))		(* end case *))	  in	    wrap union	  end  (* return a map whose domain is the intersection of the domains of the   * two input maps, using the supplied function to define the range.   *)    fun intersectWith mergeFn = let	  fun intersect (t1, t2, n, result) = (case (next t1, next t2)		 of ((T(_, _, xk, x, _), r1), (T(_, _, yk, y, _), r2)) =>		      if (xk < yk)			then intersect (r1, t2, n, result)		      else if (xk = yk)			then intersect (			  r1, r2, n+1, addItem(xk, mergeFn(x, y), result))			else intersect (t1, r2, n, result)		  | _ => (n, result)		(* end case *))	  in	    wrap intersect	  end    fun intersectWithi mergeFn = let	  fun intersect (t1, t2, n, result) = (case (next t1, next t2)		 of ((T(_, _, xk, x, _), r1), (T(_, _, yk, y, _), r2)) =>		      if (xk < yk)			then intersect (r1, t2, n, result)		      else if (xk = yk)			then intersect (r1, r2, n+1,			  addItem(xk, mergeFn(xk, x, y), result))			else intersect (t1, r2, n, result)		  | _ => (n, result)		(* end case *))	  in	    wrap intersect	  end    end (* local *)    fun app f = let	  fun appf E = ()	    | appf (T(_, a, _, x, b)) = (appf a; f x; appf b)	  in	    fn (MAP(_, m)) => appf m	  end    fun appi f = let	  fun appf E = ()	    | appf (T(_, a, xk, x, b)) = (appf a; f(xk, x); appf b)	  in	    fn (MAP(_, m)) => appf m	  end    fun map f = let	  fun mapf E = E	    | mapf (T(color, a, xk, x, b)) =		T(color, mapf a, xk, f x, mapf b)	  in	    fn (MAP(n, m)) => MAP(n, mapf m)	  end    fun mapi f = let	  fun mapf E = E	    | mapf (T(color, a, xk, x, b)) =		T(color, mapf a, xk, f(xk, x), mapf b)	  in	    fn (MAP(n, m)) => MAP(n, mapf m)	  end  (* Filter out those elements of the map that do not satisfy the   * predicate.  The filtering is done in increasing map order.   *)    fun filter pred (MAP(_, t)) = let	  fun walk (E, n, result) = (n, result)	    | walk (T(_, a, xk, x, b), n, result) = let		val (n, result) = walk(a, n, result)		in		  if (pred x)		    then walk(b, n+1, addItem(xk, x, result))		    else walk(b, n, result)		end	  val (n, result) = walk (t, 0, ZERO)	  in	    MAP(n, linkAll result)	  end    fun filteri pred (MAP(_, t)) = let	  fun walk (E, n, result) = (n, result)	    | walk (T(_, a, xk, x, b), n, result) = let		val (n, result) = walk(a, n, result)		in		  if (pred(xk, x))		    then walk(b, n+1, addItem(xk, x, result))		    else walk(b, n, result)		end	  val (n, result) = walk (t, 0, ZERO)	  in	    MAP(n, linkAll result)	  end  (* map a partial function over the elements of a map in increasing   * map order.   *)    fun mapPartial f = let	  fun f' (xk, x, m) = (case f x		 of NONE => m		  | (SOME y) => insert(m, xk, y)		(* end case *))	  in	    foldli f' empty	  end    fun mapPartiali f = let	  fun f' (xk, x, m) = (case f(xk, x)		 of NONE => m		  | (SOME y) => insert(m, xk, y)		(* end case *))	  in	    foldli f' empty	  end  end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -