📄 word-redblack-set.sml
字号:
(* word-redblack-set.sml * * COPYRIGHT (c) 2000 Bell Labs, Lucent Technologies. * * This code is based on Chris Okasaki's implementation of * red-black trees. The linear-time tree construction code is * based on the paper "Constructing red-black trees" by Hinze, * and the delete function is based on the description in Cormen, * Leiserson, and Rivest. * * A red-black tree should satisfy the following two invariants: * * Red Invariant: each red node has a black parent. * * Black Condition: each path from the root to an empty node has the * same number of black nodes (the tree's black height). * * The Red condition implies that the root is always black and the Black * condition implies that any node with only one child will be black and * its child will be a red leaf. *)structure WordRedBlackSet :> ORD_SET where type Key.ord_key = word = struct structure Key = struct type ord_key = word val compare = Word.compare end type item = word datatype color = R | B datatype tree = E | T of (color * tree * item * tree) datatype set = SET of (int * tree) fun isEmpty (SET(_, E)) = true | isEmpty _ = false val empty = SET(0, E) fun singleton x = SET(1, T(R, E, x, E)) fun add (SET(nItems, m), x) = let val nItems' = ref nItems fun ins E = (nItems' := nItems+1; T(R, E, x, E)) | ins (s as T(color, a, y, b)) = if (x < y) then (case a of T(R, c, z, d) => if (x < z) then (case ins c of T(R, e, w, f) => T(R, T(B,e,w,f), z, T(B,d,y,b)) | c => T(B, T(R,c,z,d), y, b) (* end case *)) else if (x = z) then T(color, T(R, c, x, d), y, b) else (case ins d of T(R, e, w, f) => T(R, T(B,c,z,e), w, T(B,f,y,b)) | d => T(B, T(R,c,z,d), y, b) (* end case *)) | _ => T(B, ins a, y, b) (* end case *)) else if (x = y) then T(color, a, x, b) else (case b of T(R, c, z, d) => if (x < z) then (case ins c of T(R, e, w, f) => T(R, T(B,a,y,e), w, T(B,f,z,d)) | c => T(B, a, y, T(R,c,z,d)) (* end case *)) else if (x = z) then T(color, a, y, T(R, c, x, d)) else (case ins d of T(R, e, w, f) => T(R, T(B,a,y,c), z, T(B,e,w,f)) | d => T(B, a, y, T(R,c,z,d)) (* end case *)) | _ => T(B, a, y, ins b) (* end case *)) val m = ins m in SET(!nItems', m) end fun add' (x, m) = add (m, x) fun addList (s, []) = s | addList (s, x::r) = addList(add(s, x), r) (* Remove an item. Raises LibBase.NotFound if not found. *) local datatype zipper = TOP | LEFT of (color * item * tree * zipper) | RIGHT of (color * tree * item * zipper) in fun delete (SET(nItems, t), k) = let fun zip (TOP, t) = t | zip (LEFT(color, x, b, z), a) = zip(z, T(color, a, x, b)) | zip (RIGHT(color, a, x, z), b) = zip(z, T(color, a, x, b)) (* bbZip propagates a black deficit up the tree until either the top * is reached, or the deficit can be covered. It returns a boolean * that is true if there is still a deficit and the zipped tree. *) fun bbZip (TOP, t) = (true, t) | bbZip (LEFT(B, x, T(R, c, y, d), z), a) = (* case 1L *) bbZip (LEFT(R, x, c, LEFT(B, y, d, z)), a) | bbZip (LEFT(color, x, T(B, T(R, c, y, d), w, e), z), a) = (* case 3L *) bbZip (LEFT(color, x, T(B, c, y, T(R, d, w, e)), z), a) | bbZip (LEFT(color, x, T(B, c, y, T(R, d, w, e)), z), a) = (* case 4L *) (false, zip (z, T(color, T(B, a, x, c), y, T(B, d, w, e)))) | bbZip (LEFT(R, x, T(B, c, y, d), z), a) = (* case 2L *) (false, zip (z, T(B, a, x, T(R, c, y, d)))) | bbZip (LEFT(B, x, T(B, c, y, d), z), a) = (* case 2L *) bbZip (z, T(B, a, x, T(R, c, y, d))) | bbZip (RIGHT(color, T(R, c, y, d), x, z), b) = (* case 1R *) bbZip (RIGHT(R, d, x, RIGHT(B, c, y, z)), b) | bbZip (RIGHT(color, T(B, T(R, c, w, d), y, e), x, z), b) = (* case 3R *) bbZip (RIGHT(color, T(B, c, w, T(R, d, y, e)), x, z), b) | bbZip (RIGHT(color, T(B, c, y, T(R, d, w, e)), x, z), b) = (* case 4R *) (false, zip (z, T(color, c, y, T(B, T(R, d, w, e), x, b)))) | bbZip (RIGHT(R, T(B, c, y, d), x, z), b) = (* case 2R *) (false, zip (z, T(B, T(R, c, y, d), x, b))) | bbZip (RIGHT(B, T(B, c, y, d), x, z), b) = (* case 2R *) bbZip (z, T(B, T(R, c, y, d), x, b)) | bbZip (z, t) = (false, zip(z, t)) fun delMin (T(R, E, y, b), z) = (y, (false, zip(z, b))) | delMin (T(B, E, y, b), z) = (y, bbZip(z, b)) | delMin (T(color, a, y, b), z) = delMin(a, LEFT(color, y, b, z)) | delMin (E, _) = raise Match fun join (R, E, E, z) = zip(z, E) | join (_, a, E, z) = #2(bbZip(z, a)) (* color = black *) | join (_, E, b, z) = #2(bbZip(z, b)) (* color = black *) | join (color, a, b, z) = let val (x, (needB, b')) = delMin(b, TOP) in if needB then #2(bbZip(z, T(color, a, x, b'))) else zip(z, T(color, a, x, b')) end fun del (E, z) = raise LibBase.NotFound | del (T(color, a, y, b), z) = if (k < y) then del (a, LEFT(color, y, b, z)) else if (k = y) then join (color, a, b, z) else del (b, RIGHT(color, a, y, z)) in SET(nItems-1, del(t, TOP)) end end (* local *) (* Return true if and only if item is an element in the set *) fun member (SET(_, t), k) = let fun find' E = false | find' (T(_, a, y, b)) = (k = y) orelse ((k < y) andalso find' a) orelse find' b in find' t end (* Return the number of items in the map *) fun numItems (SET(n, _)) = n fun foldl f = let fun foldf (E, accum) = accum | foldf (T(_, a, x, b), accum) = foldf(b, f(x, foldf(a, accum))) in fn init => fn (SET(_, m)) => foldf(m, init) end fun foldr f = let fun foldf (E, accum) = accum | foldf (T(_, a, x, b), accum) = foldf(a, f(x, foldf(b, accum))) in fn init => fn (SET(_, m)) => foldf(m, init) end (* return an ordered list of the items in the set. *) fun listItems s = foldr (fn (x, l) => x::l) [] s (* functions for walking the tree while keeping a stack of parents * to be visited. *) fun next ((t as T(_, _, _, b))::rest) = (t, left(b, rest)) | next _ = (E, []) and left (E, rest) = rest | left (t as T(_, a, _, _), rest) = left(a, t::rest) fun start m = left(m, []) (* Return true if and only if the two sets are equal *) fun equal (SET(_, s1), SET(_, s2)) = let fun cmp (t1, t2) = (case (next t1, next t2) of ((E, _), (E, _)) => true | ((E, _), _) => false | (_, (E, _)) => false | ((T(_, _, x, _), r1), (T(_, _, y, _), r2)) => (x = y) andalso cmp (r1, r2) (* end case *)) in cmp (start s1, start s2) end (* Return the lexical order of two sets *) fun compare (SET(_, s1), SET(_, s2)) = let fun cmp (t1, t2) = (case (next t1, next t2) of ((E, _), (E, _)) => EQUAL | ((E, _), _) => LESS | (_, (E, _)) => GREATER | ((T(_, _, x, _), r1), (T(_, _, y, _), r2)) => if (x = y) then cmp (r1, r2) else if (x < y) then LESS else GREATER (* end case *)) in cmp (start s1, start s2) end (* Return true if and only if the first set is a subset of the second *) fun isSubset (SET(_, s1), SET(_, s2)) = let fun cmp (t1, t2) = (case (next t1, next t2) of ((E, _), (E, _)) => true | ((E, _), _) => true | (_, (E, _)) => false | ((T(_, _, x, _), r1), (T(_, _, y, _), r2)) => ((x = y) andalso cmp (r1, r2)) orelse ((x > y) andalso cmp (t1, r2)) (* end case *)) in cmp (start s1, start s2) end (* support for constructing red-black trees in linear time from increasing * ordered sequences (based on a description by R. Hinze). Note that the * elements in the digits are ordered with the largest on the left, whereas * the elements of the trees are ordered with the largest on the right. *) datatype digit = ZERO | ONE of (item * tree * digit) | TWO of (item * tree * item * tree * digit) (* add an item that is guaranteed to be larger than any in l *) fun addItem (a, l) = let fun incr (a, t, ZERO) = ONE(a, t, ZERO) | incr (a1, t1, ONE(a2, t2, r)) = TWO(a1, t1, a2, t2, r) | incr (a1, t1, TWO(a2, t2, a3, t3, r)) = ONE(a1, t1, incr(a2, T(B, t3, a3, t2), r)) in incr(a, E, l) end (* link the digits into a tree *) fun linkAll t = let fun link (t, ZERO) = t | link (t1, ONE(a, t2, r)) = link(T(B, t2, a, t1), r) | link (t, TWO(a1, t1, a2, t2, r)) = link(T(B, T(R, t2, a2, t1), a1, t), r) in link (E, t) end (* return the union of the two sets *) fun union (SET(_, s1), SET(_, s2)) = let fun ins ((E, _), n, result) = (n, result) | ins ((T(_, _, x, _), r), n, result) = ins(next r, n+1, addItem(x, result)) fun union' (t1, t2, n, result) = (case (next t1, next t2) of ((E, _), (E, _)) => (n, result) | ((E, _), t2) => ins(t2, n, result) | (t1, (E, _)) => ins(t1, n, result) | ((T(_, _, x, _), r1), (T(_, _, y, _), r2)) => if (x < y) then union' (r1, t2, n+1, addItem(x, result)) else if (x = y) then union' (r1, r2, n+1, addItem(x, result)) else union' (t1, r2, n+1, addItem(y, result)) (* end case *)) val (n, result) = union' (start s1, start s2, 0, ZERO) in SET(n, linkAll result) end (* return the intersection of the two sets *) fun intersection (SET(_, s1), SET(_, s2)) = let fun intersect (t1, t2, n, result) = (case (next t1, next t2) of ((T(_, _, x, _), r1), (T(_, _, y, _), r2)) => if (x < y) then intersect (r1, t2, n, result) else if (x = y) then intersect (r1, r2, n+1, addItem(x, result)) else intersect (t1, r2, n, result) | _ => (n, result) (* end case *)) val (n, result) = intersect (start s1, start s2, 0, ZERO) in SET(n, linkAll result) end (* return the set difference *) fun difference (SET(_, s1), SET(_, s2)) = let fun ins ((E, _), n, result) = (n, result) | ins ((T(_, _, x, _), r), n, result) = ins(next r, n+1, addItem(x, result)) fun diff (t1, t2, n, result) = (case (next t1, next t2) of ((E, _), _) => (n, result) | (t1, (E, _)) => ins(t1, n, result) | ((T(_, _, x, _), r1), (T(_, _, y, _), r2)) => if (x < y) then diff (r1, t2, n+1, addItem(x, result)) else if (x = y) then diff (r1, r2, n, result) else diff (t1, r2, n, result) (* end case *)) val (n, result) = diff (start s1, start s2, 0, ZERO) in SET(n, linkAll result) end fun app f = let fun appf E = () | appf (T(_, a, x, b)) = (appf a; f x; appf b) in fn (SET(_, m)) => appf m end fun map f = let fun addf (x, m) = add(m, f x) in foldl addf empty end (* Filter out those elements of the set that do not satisfy the * predicate. The filtering is done in increasing map order. *) fun filter pred (SET(_, t)) = let fun walk (E, n, result) = (n, result) | walk (T(_, a, x, b), n, result) = let val (n, result) = walk(a, n, result) in if (pred x) then walk(b, n+1, addItem(x, result)) else walk(b, n, result) end val (n, result) = walk (t, 0, ZERO) in SET(n, linkAll result) end fun exists pred = let fun test E = false | test (T(_, a, x, b)) = test a orelse pred x orelse test b in fn (SET(_, t)) => test t end fun all pred = let fun test E = true | test (T(_, a, x, b)) = test a andalso pred x andalso test b in fn (SET(_, t)) => test t end fun find pred = let fun test E = NONE | test (T(_, a, x, b)) = (case test a of NONE => if pred x then SOME x else test b | someItem => someItem (* end case *)) in fn (SET(_, t)) => test t end end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -