⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 binary-map-fn.sml

📁 这是我们参加06年全国开源软件的竞赛作品
💻 SML
字号:
(* binary-map-fn.sml * * COPYRIGHT (c) 1993 by AT&T Bell Laboratories.  See COPYRIGHT file for details. * * This code was adapted from Stephen Adams' binary tree implementation * of applicative integer sets. * *   Copyright 1992 Stephen Adams. * *    This software may be used freely provided that: *      1. This copyright notice is attached to any copy, derived work, *         or work including all or part of this software. *      2. Any derived work must contain a prominent notice stating that *         it has been altered from the original. * * *   Name(s): Stephen Adams. *   Department, Institution: Electronics & Computer Science, *      University of Southampton *   Address:  Electronics & Computer Science *             University of Southampton *	     Southampton  SO9 5NH *	     Great Britian *   E-mail:   sra@ecs.soton.ac.uk * *   Comments: * *     1.  The implementation is based on Binary search trees of Bounded *         Balance, similar to Nievergelt & Reingold, SIAM J. Computing *         2(1), March 1973.  The main advantage of these trees is that *         they keep the size of the tree in the node, giving a constant *         time size operation. * *     2.  The bounded balance criterion is simpler than N&R's alpha. *         Simply, one subtree must not have more than `weight' times as *         many elements as the opposite subtree.  Rebalancing is *         guaranteed to reinstate the criterion for weight>2.23, but *         the occasional incorrect behaviour for weight=2 is not *         detrimental to performance. * *)functor BinaryMapFn (K : ORD_KEY) : ORD_MAP =  struct    structure Key = K    (*    **  val weight = 3    **  fun wt i = weight * i    *)    fun wt (i : int) = i + i + i    datatype 'a map      = E       | T of {          key : K.ord_key,           value : 'a,           cnt : int,           left : 'a map,           right : 'a map	}    val empty = E    fun isEmpty E = true      | isEmpty _ = false    fun numItems E = 0      | numItems (T{cnt,...}) = cnt  (* return the first item in the map (or NONE if it is empty) *)    fun first E = NONE      | first (T{value, left=E, ...}) = SOME value      | first (T{left, ...}) = first left  (* return the first item in the map and its key (or NONE if it is empty) *)    fun firsti E = NONE      | firsti (T{key, value, left=E, ...}) = SOME(key, value)      | firsti (T{left, ...}) = firsti leftlocal    fun N(k,v,E,E) = T{key=k,value=v,cnt=1,left=E,right=E}      | N(k,v,E,r as T n) = T{key=k,value=v,cnt=1+(#cnt n),left=E,right=r}      | N(k,v,l as T n,E) = T{key=k,value=v,cnt=1+(#cnt n),left=l,right=E}      | N(k,v,l as T n,r as T n') =           T{key=k,value=v,cnt=1+(#cnt n)+(#cnt n'),left=l,right=r}    fun single_L (a,av,x,T{key=b,value=bv,left=y,right=z,...}) =           N(b,bv,N(a,av,x,y),z)      | single_L _ = raise Match    fun single_R (b,bv,T{key=a,value=av,left=x,right=y,...},z) =           N(a,av,x,N(b,bv,y,z))      | single_R _ = raise Match    fun double_L (a,av,w,T{key=c,value=cv,left=T{key=b,value=bv,left=x,right=y,...},right=z,...}) =          N(b,bv,N(a,av,w,x),N(c,cv,y,z))      | double_L _ = raise Match    fun double_R (c,cv,T{key=a,value=av,left=w,right=T{key=b,value=bv,left=x,right=y,...},...},z) =           N(b,bv,N(a,av,w,x),N(c,cv,y,z))      | double_R _ = raise Match    fun T' (k,v,E,E) = T{key=k,value=v,cnt=1,left=E,right=E}      | T' (k,v,E,r as T{right=E,left=E,...}) =          T{key=k,value=v,cnt=2,left=E,right=r}      | T' (k,v,l as T{right=E,left=E,...},E) =          T{key=k,value=v,cnt=2,left=l,right=E}      | T' (p as (_,_,E,T{left=T _,right=E,...})) = double_L p      | T' (p as (_,_,T{left=E,right=T _,...},E)) = double_R p        (* these cases almost never happen with small weight*)      | T' (p as (_,_,E,T{left=T{cnt=ln,...},right=T{cnt=rn,...},...})) =          if ln < rn then single_L p else double_L p      | T' (p as (_,_,T{left=T{cnt=ln,...},right=T{cnt=rn,...},...},E)) =          if ln > rn then single_R p else double_R p      | T' (p as (_,_,E,T{left=E,...})) = single_L p      | T' (p as (_,_,T{right=E,...},E)) = single_R p      | T' (p as (k,v,l as T{cnt=ln,left=ll,right=lr,...},                      r as T{cnt=rn,left=rl,right=rr,...})) =          if rn >= wt ln then (*right is too big*)            let val rln = numItems rl                val rrn = numItems rr            in              if rln < rrn then  single_L p  else  double_L p            end                  else if ln >= wt rn then  (*left is too big*)            let val lln = numItems ll                val lrn = numItems lr            in              if lrn < lln then  single_R p  else  double_R p            end              else T{key=k,value=v,cnt=ln+rn+1,left=l,right=r}    local      fun min (T{left=E,key,value,...}) = (key,value)        | min (T{left,...}) = min left        | min _ = raise Match        fun delmin (T{left=E,right,...}) = right        | delmin (T{key,value,left,right,...}) = T'(key,value,delmin left,right)        | delmin _ = raise Match    in      fun delete' (E,r) = r        | delete' (l,E) = l        | delete' (l,r) = let val (mink,minv) = min r in            T'(mink,minv,l,delmin r)          end    endin    fun mkDict () = E        fun singleton (x,v) = T{key=x,value=v,cnt=1,left=E,right=E}    fun insert (E,x,v) = T{key=x,value=v,cnt=1,left=E,right=E}      | insert (T(set as {key,left,right,value,...}),x,v) =          case K.compare (key,x) of            GREATER => T'(key,value,insert(left,x,v),right)          | LESS => T'(key,value,left,insert(right,x,v))          | _ => T{key=x,value=v,left=left,right=right,cnt= #cnt set}    fun insert' ((k, x), m) = insert(m, k, x)    fun inDomain (set, x) = let 	  fun mem E = false	    | mem (T(n as {key,left,right,...})) = (case K.compare (x,key)		 of GREATER => mem right		  | EQUAL => true		  | LESS => mem left		(* end case *))	  in	    mem set	  end    fun find (set, x) = let 	  fun mem E = NONE	    | mem (T(n as {key,left,right,...})) = (case K.compare (x,key)		 of GREATER => mem right		  | EQUAL => SOME(#value n)		  | LESS => mem left		(* end case *))	  in	    mem set	  end    fun remove (E,x) = raise LibBase.NotFound      | remove (set as T{key,left,right,value,...},x) = (          case K.compare (key,x)	   of GREATER => let		val (left', v) = remove(left, x)		in		  (T'(key, value, left', right), v)		end            | LESS => let		val (right', v) = remove (right, x)		in		  (T'(key, value, left, right'), v)		end            | _ => (delete'(left,right),value)	  (* end case *))    fun listItems d = let	  fun d2l (E, l) = l	    | d2l (T{key,value,left,right,...}, l) =		d2l(left, value::(d2l(right,l)))	  in	    d2l (d,[])	  end    fun listItemsi d = let	  fun d2l (E, l) = l	    | d2l (T{key,value,left,right,...}, l) =		d2l(left, (key,value)::(d2l(right,l)))	  in	    d2l (d,[])	  end    fun listKeys d = let	  fun d2l (E, l) = l	    | d2l (T{key,left,right,...}, l) = d2l(left, key::(d2l(right,l)))	  in	    d2l (d,[])	  end    local      fun next ((t as T{right, ...})::rest) = (t, left(right, rest))	| next _ = (E, [])      and left (E, rest) = rest	| left (t as T{left=l, ...}, rest) = left(l, t::rest)    in    fun collate cmpRng (s1, s2) = let	  fun cmp (t1, t2) = (case (next t1, next t2)		 of ((E, _), (E, _)) => EQUAL		  | ((E, _), _) => LESS		  | (_, (E, _)) => GREATER		  | ((T{key=x1, value=y1, ...}, r1), (T{key=x2, value=y2, ...}, r2)) => (		      case Key.compare(x1, x2)		       of EQUAL => (case cmpRng(y1, y2)			     of EQUAL => cmp (r1, r2)			      | order => order			    (* end case *))			| order => order		      (* end case *))		(* end case *))	  in	    cmp (left(s1, []), left(s2, []))	  end    end (* local *)    fun appi f d = let	  fun app' E = ()	    | app' (T{key,value,left,right,...}) = (		app' left; f(key, value); app' right)	  in	    app' d	  end    fun app f d = let	  fun app' E = ()	    | app' (T{value,left,right,...}) = (		app' left; f value; app' right)	  in	    app' d	  end    fun mapi f d = let	  fun map' E = E	    | map' (T{key,value,left,right,cnt}) = let		val left' = map' left		val value' = f(key, value)		val right' = map' right		in		  T{cnt=cnt, key=key, value=value', left = left', right = right'}		end	  in	    map' d	  end    fun map f d = mapi (fn (_, x) => f x) d    fun foldli f init d = let	  fun fold (E, v) = v	    | fold (T{key,value,left,right,...}, v) =		fold (right, f(key, value, fold(left, v)))	  in	    fold (d, init)	  end    fun foldl f init d = foldli (fn (_, v, accum) => f (v, accum)) init d    fun foldri f init d = let	  fun fold (E,v) = v	    | fold (T{key,value,left,right,...},v) =		fold (left, f(key, value, fold(right, v)))	  in	    fold (d, init)	  end    fun foldr f init d = foldri (fn (_, v, accum) => f (v, accum)) init d(** To be implemented **    val filter  : ('a -> bool) -> 'a map -> 'a map    val filteri : (Key.ord_key * 'a -> bool) -> 'a map -> 'a map**)    end (* local *)(* the following are generic implementations of the unionWith and intersectWith * operetions.  These should be specialized for the internal representations * at some point. *)    fun unionWith f (m1, m2) = let	  fun ins  f (key, x, m) = (case find(m, key)		 of NONE => insert(m, key, x)		  | (SOME x') => insert(m, key, f(x, x'))		(* end case *))	  in	    if (numItems m1 > numItems m2)	      then foldli (ins (fn (a, b) => f (b, a))) m1 m2	      else foldli (ins f) m2 m1	  end    fun unionWithi f (m1, m2) = let	  fun ins f (key, x, m) = (case find(m, key)		 of NONE => insert(m, key, x)		  | (SOME x') => insert(m, key, f(key, x, x'))		(* end case *))	  in	    if (numItems m1 > numItems m2)	      then foldli (ins (fn (k, a, b) => f (k, b, a))) m1 m2	      else foldli (ins f) m2 m1	  end    fun intersectWith f (m1, m2) = let	(* iterate over the elements of m1, checking for membership in m2 *)	  fun intersect f (m1, m2) = let		fun ins (key, x, m) = (case find(m2, key)		       of NONE => m			| (SOME x') => insert(m, key, f(x, x'))		      (* end case *))		in		  foldli ins empty m1		end	  in	    if (numItems m1 > numItems m2)	      then intersect f (m1, m2)	      else intersect (fn (a, b) => f(b, a)) (m2, m1)	  end    fun intersectWithi f (m1, m2) = let	(* iterate over the elements of m1, checking for membership in m2 *)	  fun intersect f (m1, m2) = let		fun ins (key, x, m) = (case find(m2, key)		       of NONE => m			| (SOME x') => insert(m, key, f(key, x, x'))		      (* end case *))		in		  foldli ins empty m1		end	  in	    if (numItems m1 > numItems m2)	      then intersect f (m1, m2)	      else intersect (fn (k, a, b) => f(k, b, a)) (m2, m1)	  end  (* this is a generic implementation of filter.  It should   * be specialized to the data-structure at some point.   *)    fun filter predFn m = let	  fun f (key, item, m) = if predFn item		then insert(m, key, item)		else m	  in	    foldli f empty m	  end    fun filteri predFn m = let	  fun f (key, item, m) = if predFn(key, item)		then insert(m, key, item)		else m	  in	    foldli f empty m	  end  (* this is a generic implementation of mapPartial.  It should   * be specialized to the data-structure at some point.   *)    fun mapPartial f m = let	  fun g (key, item, m) = (case f item		 of NONE => m		  | (SOME item') => insert(m, key, item')		(* end case *))	  in	    foldli g empty m	  end    fun mapPartiali f m = let	  fun g (key, item, m) = (case f(key, item)		 of NONE => m		  | (SOME item') => insert(m, key, item')		(* end case *))	  in	    foldli g empty m	  end  end (* functor BinaryMapFn *)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -