⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 durlev.m

📁 时间序列分析的matlab程序
💻 M
字号:
function [MX,res,arg3] = durlev(AutoCov);% function  [AR,RC,PE] = durlev(ACF);% function  [MX,PE] = durlev(ACF);% estimates AR(p) model parameter by solving the% Yule-Walker with the Durbin-Levinson recursion% for multiple channels%  INPUT:% ACF	Autocorrelation function from lag=[0:p]%%  OUTPUT% AR    autoregressive model parameter	% RC    reflection coefficients (= -PARCOR coefficients)% PE    remaining error variance% MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)%        AR(:,K) = MX(:,K*(K-1)/2+(1:K));%        RC(:,K) = MX(:,(1:K).*(2:K+1)/2);%% All input and output parameters are organized in rows, one row % corresponds to the parameters of one channel%% see also ACOVF ACORF AR2RC RC2AR LATTICE% % REFERENCES:%  Levinson N. (1947) "The Wiener RMS(root-mean-square) error criterion in filter design and prediction." J. Math. Phys., 25, pp.261-278.%  Durbin J. (1960) "The fitting of time series models." Rev. Int. Stat. Inst. vol 28., pp 233-244.%  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.%  S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.%  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. %  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.%       Version 2.99        23.05.2002%	Copyright (C) 1998-2002 by Alois Schloegl <a.schloegl@ieee.org>		% This library is free software; you can redistribute it and/or% modify it under the terms of the GNU Library General Public% License as published by the Free Software Foundation; either% Version 2 of the License, or (at your option) any later version.%% This library is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU% Library General Public License for more details.%% You should have received a copy of the GNU Library General Public% License along with this library; if not, write to the% Free Software Foundation, Inc., 59 Temple Place - Suite 330,% Boston, MA  02111-1307, USA.% Inititialization[lr,lc]=size(AutoCov);res=[AutoCov(:,1), zeros(lr,lc-1)];d=zeros(lr,1);if nargout<3         % needs O(p^2) memory         MX=zeros(lr,lc*(lc-1)/2);           idx=0;        idx1=0;        % Durbin-Levinson Algorithm        for K=1:lc-1,                %idx=K*(K-1)/2;  %see below                % for L=1:lr, d(L)=arp(L,1:K-1)*transpose(AutoCov(L,K:-1:2));end;  % Matlab 4.x, Octave                % d=sum(MX(:,idx+(1:K-1)).*AutoCov(:,K:-1:2),2);              % Matlab 5.x                MX(:,idx+K)=(AutoCov(:,K+1)-sum(MX(:,idx1+(1:K-1)).*AutoCov(:,K:-1:2),2))./res(:,K);                %rc(:,K)=arp(:,K);                %if K>1   %for compatibility with OCTAVE 2.0.13                        MX(:,idx+(1:K-1))=MX(:,idx1+(1:K-1))-MX(:,(idx+K)*ones(K-1,1)).*MX(:,idx1+(K-1:-1:1));                %end;                   % for L=1:lr, d(L)=MX(L,idx+(1:K))*(AutoCov(L,K+1:-1:2).');end; % Matlab 4.x, Octave                % d=sum(MX(:,idx+(1:K)).*AutoCov(:,K+1:-1:2),2);              % Matlab 5.x                res(:,K+1) = res(:,K).*(1-abs(MX(:,idx+K)).^2);                idx1=idx;                idx=idx+K;        end;        %arp=MX(:,K*(K-1)/2+(1:K));        %rc =MX(:,(1:K).*(2:K+1)/2);        else            % needs O(p) memory                 arp=zeros(lr,lc-1);        rc=zeros(lr,lc-1);                % Durbin-Levinson Algorithm        for K=1:lc-1,                % for L=1:lr, d(L)=arp(L,1:K-1)*transpose(AutoCov(L,K:-1:2));end;  % Matlab 4.x, Octave                % d=sum(arp(:,1:K-1).*AutoCov(:,K:-1:2),2);              % Matlab 5.x                arp(:,K) = (AutoCov(:,K+1)-sum(arp(:,1:K-1).*AutoCov(:,K:-1:2),2))./res(:,K); % Yule-Walker                rc(:,K)  = arp(:,K);                %if K>1   %for compatibility with OCTAVE 2.0.13                        arp(:,1:K-1)=arp(:,1:K-1)-arp(:,K*ones(K-1,1)).*arp(:,K-1:-1:1);                %end;                %for L=1:lr, d(L)=arp(L,1:K)*(AutoCov(L,K+1:-1:2).');end; % Matlab 4.x, Octave                % d=sum(arp(:,1:K).*AutoCov(:,K+1:-1:2),2);              % Matlab 5.x                res(:,K+1) = res(:,K).*(1-abs(arp(:,K)).^2);        end;                % assign output arguments        arg3=res;        res=rc;        MX=arp;end; %if

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -