📄 durlev.m
字号:
function [MX,res,arg3] = durlev(AutoCov);% function [AR,RC,PE] = durlev(ACF);% function [MX,PE] = durlev(ACF);% estimates AR(p) model parameter by solving the% Yule-Walker with the Durbin-Levinson recursion% for multiple channels% INPUT:% ACF Autocorrelation function from lag=[0:p]%% OUTPUT% AR autoregressive model parameter % RC reflection coefficients (= -PARCOR coefficients)% PE remaining error variance% MX transformation matrix between ARP and RC (Attention: needs O(p^2) memory)% AR(:,K) = MX(:,K*(K-1)/2+(1:K));% RC(:,K) = MX(:,(1:K).*(2:K+1)/2);%% All input and output parameters are organized in rows, one row % corresponds to the parameters of one channel%% see also ACOVF ACORF AR2RC RC2AR LATTICE% % REFERENCES:% Levinson N. (1947) "The Wiener RMS(root-mean-square) error criterion in filter design and prediction." J. Math. Phys., 25, pp.261-278.% Durbin J. (1960) "The fitting of time series models." Rev. Int. Stat. Inst. vol 28., pp 233-244.% P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.% S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. % W.S. Wei "Time Series Analysis" Addison Wesley, 1990.% Version 2.99 23.05.2002% Copyright (C) 1998-2002 by Alois Schloegl <a.schloegl@ieee.org> % This library is free software; you can redistribute it and/or% modify it under the terms of the GNU Library General Public% License as published by the Free Software Foundation; either% Version 2 of the License, or (at your option) any later version.%% This library is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU% Library General Public License for more details.%% You should have received a copy of the GNU Library General Public% License along with this library; if not, write to the% Free Software Foundation, Inc., 59 Temple Place - Suite 330,% Boston, MA 02111-1307, USA.% Inititialization[lr,lc]=size(AutoCov);res=[AutoCov(:,1), zeros(lr,lc-1)];d=zeros(lr,1);if nargout<3 % needs O(p^2) memory MX=zeros(lr,lc*(lc-1)/2); idx=0; idx1=0; % Durbin-Levinson Algorithm for K=1:lc-1, %idx=K*(K-1)/2; %see below % for L=1:lr, d(L)=arp(L,1:K-1)*transpose(AutoCov(L,K:-1:2));end; % Matlab 4.x, Octave % d=sum(MX(:,idx+(1:K-1)).*AutoCov(:,K:-1:2),2); % Matlab 5.x MX(:,idx+K)=(AutoCov(:,K+1)-sum(MX(:,idx1+(1:K-1)).*AutoCov(:,K:-1:2),2))./res(:,K); %rc(:,K)=arp(:,K); %if K>1 %for compatibility with OCTAVE 2.0.13 MX(:,idx+(1:K-1))=MX(:,idx1+(1:K-1))-MX(:,(idx+K)*ones(K-1,1)).*MX(:,idx1+(K-1:-1:1)); %end; % for L=1:lr, d(L)=MX(L,idx+(1:K))*(AutoCov(L,K+1:-1:2).');end; % Matlab 4.x, Octave % d=sum(MX(:,idx+(1:K)).*AutoCov(:,K+1:-1:2),2); % Matlab 5.x res(:,K+1) = res(:,K).*(1-abs(MX(:,idx+K)).^2); idx1=idx; idx=idx+K; end; %arp=MX(:,K*(K-1)/2+(1:K)); %rc =MX(:,(1:K).*(2:K+1)/2); else % needs O(p) memory arp=zeros(lr,lc-1); rc=zeros(lr,lc-1); % Durbin-Levinson Algorithm for K=1:lc-1, % for L=1:lr, d(L)=arp(L,1:K-1)*transpose(AutoCov(L,K:-1:2));end; % Matlab 4.x, Octave % d=sum(arp(:,1:K-1).*AutoCov(:,K:-1:2),2); % Matlab 5.x arp(:,K) = (AutoCov(:,K+1)-sum(arp(:,1:K-1).*AutoCov(:,K:-1:2),2))./res(:,K); % Yule-Walker rc(:,K) = arp(:,K); %if K>1 %for compatibility with OCTAVE 2.0.13 arp(:,1:K-1)=arp(:,1:K-1)-arp(:,K*ones(K-1,1)).*arp(:,K-1:-1:1); %end; %for L=1:lr, d(L)=arp(L,1:K)*(AutoCov(L,K+1:-1:2).');end; % Matlab 4.x, Octave % d=sum(arp(:,1:K).*AutoCov(:,K+1:-1:2),2); % Matlab 5.x res(:,K+1) = res(:,K).*(1-abs(arp(:,K)).^2); end; % assign output arguments arg3=res; res=rc; MX=arp;end; %if
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -