📄 aar.m
字号:
function [a,e,REV,TOC,CPUTIME,ESU] = aar(y, Mode, arg3, arg4, arg5, arg6, arg7, arg8, arg9); % Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA)% of real-valued data series using Kalman filter algorithm.% [a,e,REV] = aar(y, mode, MOP, UC, a0, A, W, V); %% The AAR process is described as following % y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k);% The AARMA process is described as following % y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k) + b(k,1)*e(t-1) + ... + b(k,q)*e(t-q);%% Input:% y Signal (AR-Process)% Mode is a two-element vector [aMode, vMode], % aMode determines 1 (out of 12) methods for updating the co-variance matrix (see also [1])% vMode determines 1 (out of 7) methods for estimating the innovation variance (see also [1])% aMode=1, vmode=2 is the RLS algorithm as used in [2]% aMode=-1, LMS algorithm (signal normalized)% aMode=-2, LMS algorithm with adaptive normalization % % MOP model order, default [10,0] % MOP=[p] AAR(p) model. p AR parameters% MOP=[p,q] AARMA(p,q) model, p AR parameters and q MA coefficients% UC Update Coefficient, default 0% a0 Initial AAR parameters [a(0,1), a(0,2), ..., a(0,p),b(0,1),b(0,2), ..., b(0,q)]% (row vector with p+q elements, default zeros(1,p) )% A Initial Covariance matrix (positive definite pxp-matrix, default eye(p))
% W system noise (required for aMode==0)
% V observation noise (required for vMode==0)% % Output:% a AAR(MA) estimates [a(k,1), a(k,2), ..., a(k,p),b(k,1),b(k,2), ..., b(k,q]% e error process (Adaptively filtered process)% REV relative error variance MSE/MSY%%% Hint:% The mean square (prediction) error of different variants is useful for determining the free parameters (Mode, MOP, UC) %% REFERENCE(S): % [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. % ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. %% More references can be found at % http://www.dpmi.tu-graz.ac.at/~schloegl/publications/%% $Revision: 1.10 $
% $Id: aar.m,v 1.10 2005/05/25 02:52:38 pkienzle Exp $% Copyright (C) 1998-2003 by Alois Schloegl <a.schloegl@ieee.org>%%% This library is free software; you can redistribute it and/or% modify it under the terms of the GNU Library General Public% License as published by the Free Software Foundation; either% version 2 of the License, or (at your option) any later version.% % This library is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU% Library General Public License for more details.%% You should have received a copy of the GNU Library General Public% License along with this library; if not, write to the% Free Software Foundation, Inc., 59 Temple Place - Suite 330,% Boston, MA 02111-1307, USA.% for compilation with the Matlab compiler mcc -V1.2 -ir%#realonly %#inbounds[nc,nr]=size(y);%if nc<nr y=y'; end; tmp=nr;nc=nr; nr=tmp;end;if nargin<2 Mode=0; end;% check Mode (argument2)if prod(size(Mode))==2 aMode=Mode(1); vMode=Mode(2);end;if any(aMode==(0:14)) & any(vMode==(0:7)), fprintf(1,['a' int2str(aMode) 'e' int2str(vMode) ' ']);else fprintf(2,'Error AAR.M: invalid Mode argument\n'); return;end;% check model order (argument3)if nargin<3 MOP=[10,0]; else MOP= arg3; end;if length(MOP)==0 p=10; q=0; MOP=p;elseif length(MOP)==1 p=MOP(1); q=0; MOP=p;elseif length(MOP)>=2 p=MOP(1); q=MOP(2); MOP=p+q;end;if nargin<4 UC=0; else UC= arg4; end;a0=zeros(1,MOP); A0=eye(MOP);if nargin>4, if all(size(arg5)==([1,1]*(MOP+1))); % extended covariance matrix of AAR parameters a0 = arg5(1,2:size(arg5,2)); A0 = arg5(2:size(arg5,1),2:size(arg5,2)) - a0'*a0; else a0 = arg5; if nargin>5 A0 = arg6; end; end;end;
if nargin<7, W = []; else W = arg7; end;
if all(size(W)==MOP),
if aMode ~= 0,
fprintf(1,'aMode should be 0, because W is given.\n');
end;
elseif isempty(W),
if aMode == 0,
fprintf(1,'aMode must be non-zero, because W is not given.\n');
end;
elseif any(size(W)~=MOP),
fprintf(1,'size of W does not fit. It must be %i x %i.\n',MOP,MOP);
return;
end;
if nargin<8, V0 = []; else V0 = arg8; end;
if all(size(V0)==nr),
if vMode ~= 0,
fprintf(1,'vMode should be 0, because V is given.\n');
end;
elseif isempty(V0),
if aMode == 0,
fprintf(1,'vMode must be non-zero, because V is not given.\n');
end;
else
fprintf(1,'size of V does not fit. It must be 1x1.\n');
return;
end;
% if nargin<7 TH=3; else TH = arg7; end;% TH=TH*var(y);% TH=TH*mean(detrend(y,0).^2);MSY=mean(detrend(y,0).^2);e=zeros(nc,1);Q=zeros(nc,1);V=zeros(nc,1);T=zeros(nc,1);%DET=zeros(nc,1);SPUR=zeros(nc,1);ESU=zeros(nc,1);a=a0(ones(nc,1),:);%a=zeros(nc,MOP);%b=zeros(nc,q);mu=1-UC; % Patomaeki 1995lambda=(1-UC); % Schloegl 1996arc=poly((1-UC*2)*[1;1]);b0=sum(arc); % Whale forgettting factor for Mode=258,(Bianci et al. 1997)dW=UC/MOP*eye(MOP); % Schloegl%------------------------------------------------% First Iteration%------------------------------------------------Y=zeros(MOP,1);C=zeros(MOP);%X=zeros(q,1);at=a0;A=A0;E=y(1);e(1)=E;if ~isempty(V0)
V(1) = V0;
else
V(1) = (1-UC) + UC*E*E;end;
ESU(1) = 1; %Y'*A*Y;A1=zeros(MOP);A2=A1;tic;CPUTIME=cputime;%------------------------------------------------% Update Equations%------------------------------------------------T0=2;for t=T0:nc, %Y=[y(t-1); Y(1:p-1); E ; Y(p+1:MOP-1)] if t<=p Y(1:t-1)=y(t-1:-1:1); % Autoregressive else Y(1:p)=y(t-1:-1:t-p); end; if t<=q Y(p+(1:t-1))=e(t-1:-1:1); % Moving Average else Y(p+1:MOP)=e(t-1:-1:t-q); end; % Prediction Error E = y(t) - a(t-1,:)*Y; e(t) = E; E2=E*E; AY=A*Y; esu=Y'*AY; ESU(t)=esu; if isnan(E), a(t,:)=a(t-1,:); else V(t) = V(t-1)*(1-UC)+UC*E2; if aMode == -1, % LMS % V(t) = V(t-1)*(1-UC)+UC*E2; a(t,:)=a(t-1,:) + (UC/MSY)*E*Y'; elseif aMode == -2, % LMS with adaptive estimation of the variance a(t,:)=a(t-1,:) + UC/V(t)*E*Y'; else % Kalman filtering (including RLS) if vMode==0, %eMode==4 Q(t) = (esu + V0); elseif vMode==1, %eMode==4 Q(t) = (esu + V(t)); elseif vMode==2, %eMode==2 Q(t) = (esu + 1); elseif vMode==3, %eMode==3 Q(t) = (esu + lambda); elseif vMode==4, %eMode==1 Q(t) = (esu + V(t-1)); elseif vMode==5, %eMode==6 if E2>esu V(t)=(1-UC)*V(t-1)+UC*(E2-esu); else V(t)=V(t-1); end; Q(t) = (esu + V(t)); elseif vMode==6, %eMode==7 if E2>esu V(t)=(1-UC)*V(t-1)+UC*(E2-esu); else V(t)=V(t-1); end; Q(t) = (esu + V(t-1)); elseif vMode==7, %eMode==8 Q(t) = esu; end; k = AY / Q(t); % Kalman Gain a(t,:) = a(t-1,:) + k'*E; if aMode==0, %AMode=0 A = A - k*AY' + W; % Schloegl et al. 2003 elseif aMode==1, %AMode=1 A = (1+UC)*(A - k*AY'); % Schloegl et al. 1997 elseif aMode==2, %AMode=11 A = A - k*AY'; A = A + sum(diag(A))*dW; elseif aMode==3, %AMode=5 A = A - k*AY' + sum(diag(A))*dW; elseif aMode==4, %AMode=6 A = A - k*AY' + UC*eye(MOP); % Schloegl 1998 elseif aMode==5, %AMode=2 A = A - k*AY' + UC*UC*eye(MOP); elseif aMode==6, %AMode=2 T(t)=(1-UC)*T(t-1)+UC*(E2-Q(t))/(Y'*Y); A=A*V(t-1)/Q(t); if T(t)>0 A=A+T(t)*eye(MOP); end; elseif aMode==7, %AMode=6 T(t)=(1-UC)*T(t-1)+UC*(E2-Q(t))/(Y'*Y); A=A*V(t)/Q(t); if T(t)>0 A=A+T(t)*eye(MOP); end; elseif aMode==8, %AMode=5 Q_wo = (Y'*C*Y + V(t-1)); C=A-k*AY'; T(t)=(1-UC)*T(t-1)+UC*(E2-Q_wo)/(Y'*Y); if T(t)>0 A=C+T(t)*eye(MOP); else A=C; end; elseif aMode==9, %AMode=3 A = A - (1+UC)*k*AY'; A = A + sum(diag(A))*dW; elseif aMode==10, %AMode=7 A = A - (1+UC)*k*AY' + sum(diag(A))*dW; elseif aMode==11, %AMode=8 A = A - (1+UC)*k*AY' + UC*eye(MOP); % Schloegl 1998 elseif aMode==12, %AMode=4 A = A - (1+UC)*k*AY' + UC*UC*eye(MOP); elseif aMode==13 A = A - k*AY' + UC*diag(diag(A)); elseif aMode==14 A = A - k*AY' + (UC*UC)*diag(diag(A)); end; end; end;end;%a=a(end,:);TOC = toc;CPUTIME = cputime - CPUTIME;%REV = (e'*e)/(y'*y);REV = mean(e.*e)./mean(y.*y);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -