📄 content.m
字号:
% Time Series Analysis (Ver 3.20)% Schloegl A. (1996-2003) Time Series Analysis - A Toolbox for the use with Matlab. % WWW: http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/tsa/%% Version 3.20 Date: 10 May 2003% Copyright (C) 1996-2003 by Alois Schloegl <a.schloegl@ieee.org>
%% Time Series Analysis - a toolbox for the use with Matlab% aar adaptive autoregressive estimator % acovf (*) Autocovariance function% acorf (acf) (*) autocorrelation function % pacf (*) partial autocorrelation function, includes signifcance test and confidence interval% parcor (*) partial autocorrelation function% biacovf biautocovariance function (3rd order cumulant)% bispec Bi-spectrum % durlev (*) solves Yule-Walker equation - converts ACOVF into AR parameters% lattice (*) calcultes AR parameters with lattice method% lpc (*) calculates the prediction coefficients form a given time series% invest0 (*) a prior investigation (used by invest1)% invest1 (*) investigates signal (useful for 1st evaluation of the data)% selmo (*) Select Order of Autoregressive model using different criteria% histo (*) histogram% hup (*) test Hurwitz polynomials% ucp (*) test Unit Circle Polynomials % y2res (*) computes mean, variance, skewness, kurtosis, entropy, etc. from data series % ar_spa (*) spectral analysis based on the autoregressive model% detrend (*) removes trend, can handle missing values, non-equidistant sampled data % flix floating index, interpolates data for non-interger indices%% Multivariate analysis (planned in future)% mvar multivariate (vector) autoregressive estimation % mvfilter multivariate filter% arfit2 provides compatibility to ARFIT [Schneider and Neumaier, 2001] % Conversions between Autocorrelation (AC), Autoregressive parameters (AR), % prediction polynom (POLY) and Reflection coefficient (RC) % ac2poly (*) transforms autocorrelation into prediction polynom% ac2rc (*) transforms autocorrelation into reflexion coefficients% ar2rc (*) transforms autoregressive parameters into reflection coefficients % rc2ar (*) transforms reflection coefficients into autoregressive parameters% poly2ac (*) transforms polynom to autocorrelation% poly2ar (*) transforms polynom to AR % poly2rc (*) % rc2ac (*) % rc2poly (*) % ar2poly (*) % % Utility functions % sinvest1 shows the parameter calculated by INVEST1%% Test suites% tsademo demonstrates INVEST1 on EEG data% invfdemo demonstration of matched, inverse filtering% bisdemo demonstrates bispectral estimation%% (*) indicates univariate analysis of multiple data series (each in a row) can be processed.% (-) indicates that these functions will be removed in future %% REFERENCES (sources):% http://www.itl.nist.gov/% http://mathworld.wolfram.com/% P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.% O. Foellinger "Lineare Abtastsysteme", Oldenburg Verlag, Muenchen, 1986.% F. Gausch "Systemtechnik", Textbook, University of Technology Graz, 1993. % M.S. Grewal and A.P. Andrews "Kalman Filtering" Prentice Hall, 1993. % S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.% E.I. Jury "Theory and Application of the z-Transform Method", Robert E. Krieger Publishing Co., 1973. % M.S. Kay "Modern Spectal Estimation" Prentice Hall, 1988. % Ch. Langraf and G. Schneider "Elemente der Regeltechnik", Springer Verlag, 1970.% S.L. Marple "Digital Spetral Analysis with Applications" Prentice Hall, 1987.% C.L. Nikias and A.P. Petropulu "Higher-Order Spectra Analysis" Prentice Hall, 1993.% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. % T. Schneider and A. Neumaier "Algorithm 808: ARFIT - a matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models" % ACM Transactions on Mathematical software, 27(Mar), 58-65.% C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).% W.S. Wei "Time Series Analysis" Addison Wesley, 1990.% % % REFERENCES (applications):% [1] A. Schl鰃l, B. Kemp, T. Penzel, D. Kunz, S.-L. Himanen,A. V鋜ri, G. Dorffner, G. Pfurtscheller.% Quality Control of polysomnographic Sleep Data by Histogram and Entropy Analysis. % Clin. Neurophysiol. 1999, Dec; 110(12): 2165 - 2170.% [2] Penzel T, Kemp B, Kl鰏ch G, Schl鰃l A, Hasan J, Varri A, Korhonen I.% Acquisition of biomedical signals databases% IEEE Engineering in Medicine and Biology Magazine 2001, 20(3): 25-32%% Features:% - Multiple Signal Processing% - Efficient algorithms % - Model order selection tools% - higher (3rd) order analysis% - Maximum entropy spectral estimation% - can deal with missing values (NaN's)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -