📄 selmo.m
字号:
function [FPE,AIC,BIC,SBC,MDL,CATcrit,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI,p,C]=selmo(e,NC);% Model order selection of an autoregrssive model% [FPE,AIC,BIC,SBC,MDL,CAT,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI]=selmo(E,N);%% E Error function E(p)% N length of the data set, that was used for calculating E(p)% show optional; if given the parameters are shown%% FPE Final Prediction Error (Kay 1987, Wei 1990, Priestley 1981 -> Akaike 1969)% AIC Akaike Information Criterion (Marple 1987, Wei 1990, Priestley 1981 -> Akaike 1974)% BIC Bayesian Akaike Information Criterion (Wei 1990, Priestley 1981 -> Akaike 1978,1979)% CAT Parzen's CAT Criterion (Wei 1994 -> Parzen 1974)% MDL Minimal Description length Criterion (Marple 1987 -> Rissanen 1978,83)% SBC Schwartz's Bayesian Criterion (Wei 1994; Schwartz 1978)% PHI Phi criterion (Pukkila et al. 1988, Hannan 1980 -> Hannan & Quinn, 1979)% HAR Haring G. (1975)% JEW Jenkins and Watts (1968)%% optFPE order where FPE is minimal% optAIC order where AIC is minimal% optBIC order where BIC is minimal% optSBC order where SBC is minimal% optMDL order where MDL is minimal% optCAT order where CAT is minimal% optPHI order where PHI is minimal%% usually is % AIC > FPE > *MDL* > PHI > SBC > CAT ~ BIC%% REFERENCES:% P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.% S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. % C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).% W.S. Wei "Time Series Analysis" Addison Wesley, 1990.% Jenkins G.M. Watts D.G "Spectral Analysis and its applications", Holden-Day, 1968.% G. Haring "躡er die Wahl der optimalen Modellordnung bei der Darstellung von station鋜en Zeitreihen mittels Autoregressivmodell als Basis der Analyse von EEG - Biosignalen mit Hilfe eines Digitalrechners", Habilitationschrift - Technische Universit鋞 Graz, Austria, 1975.% (1)"About selecting the optimal model at the representation of stationary time series by means of an autoregressive model as basis of the analysis of EEG - biosignals by means of a digital computer)"%%% (1) engl. translation of the titel by A. Schloegl% Version 2.99b% last revision 01.10.2002% Copyright (C) 1997-2002 by Alois Schloegl <a.schloegl@ieee.org>% This library is free software; you can redistribute it and/or% modify it under the terms of the GNU Library General Public% License as published by the Free Software Foundation; either% Version 2 of the License, or (at your option) any later version.%% This library is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU% Library General Public License for more details.%% You should have received a copy of the GNU Library General Public% License along with this library; if not, write to the% Free Software Foundation, Inc., 59 Temple Place - Suite 330,% Boston, MA 02111-1307, USA.[lr,lc]=size(e);if (lr>1) & (lc>1), p=zeros(lr+1,9)+NaN;else p=zeros(1,9)+NaN;end;if nargin<2 NC=lc*ones(lr,1); NC=(lc-sum(isnan(e)')')*(NC<lc) + NC.*(NC>=lc); % first part %end;% Pmax=min([100 N/3]); end; %if NC<lc N=lc; end; %NC=(lc-sum(isnan(e)')')*(NC<lc) + NC.*(NC>=lc); % first part else % NC=NC;end;M=lc-1;m=0:M;e = e./e(:,ones(1,lc));
for k=0:lr, if k>0, % E=e(k,:); N=NC(k); elseif lr>1 tmp = e;%(NC>0,:); tmp(isnan(tmp)) = 0; E = sum(tmp.*(NC*ones(1,lc)))/sum(NC); % weighted average, weigths correspond to number of valid (not missing) values N = sum(NC)./sum(NC>0); % corresponding number of values, else E = e; N = NC; end;FPE = E.*(N+m)./(N-m); %OK optFPE=find(FPE==min(FPE))-1; %optimal order if isempty(optFPE), optFPE=NaN; end;AIC = N*log(E)+2*m; %OK optAIC=find(AIC==min(AIC))-1; %optimal order if isempty(optAIC), optAIC=NaN; end;AIC4=N*log(E)+4*m; %OK optAIC4=find(AIC4==min(AIC4))-1; %optimal order if isempty(optAIC4), optAIC4=NaN; end;m=1:M;BIC=[ N*log(E(1)) N*log(E(m+1)) - (N-m).*log(1-m/N) + m*log(N) + m.*log(((E(1)./E(m+1))-1)./m)];%BIC=[ N*log(E(1)) N*log(E(m+1)) - m + m*log(N) + m.*log(((E(1)./E(m+1))-1)./m)];%m=0:M; BIC=N*log(E)+m*log(N); % Hannan, 1980 -> Akaike, 1977 and Rissanen 1978 optBIC=find(BIC==min(BIC))-1; %optimal order if isempty(optBIC), optBIC=NaN; end; HAR(2:lc)=-(N-m).*log((N-m).*E(m+1)./(N-m+1)./E(m)); HAR(1)=HAR(2); optHAR=min(find(HAR<=(min(HAR)+0.2)))-1; %optimal order% optHAR=find(HAR==min(HAR))-1; %optimal order if isempty(optHAR), optHAR=NaN; end; m=0:M;SBC = N*log(E)+m*log(N); optSBC=find(SBC==min(SBC))-1; %optimal order if isempty(optSBC), optSBC=NaN; end;MDL = N*log(E)+log(N)*m; optMDL=find(MDL==min(MDL))-1; %optimal order if isempty(optMDL), optMDL=NaN; end; m=0:M;%CATcrit= (cumsum(1./E(m+1))/N-1./E(m+1));E1=N*E./(N-m);CATcrit= (cumsum(1./E1(m+1))/N-1./E1(m+1)); optCAT=find(CATcrit==min(CATcrit))-1; %optimal order if isempty(optCAT), optCAT=NaN; end;PHI = N*log(E)+2*log(log(N))*m; optPHI=find(PHI==min(PHI))-1; %optimal order if isempty(optPHI), optPHI=NaN; end; JEW = E.*(N-m)./(N-2*m-1); % Jenkins-Watt optJEW=find(JEW==min(JEW))-1; %optimal order if isempty(optJEW), optJEW=NaN; end; % in case more than 1 minimum is found, the smaller model order is returned;p(k+1,:) = [optFPE(1), optAIC(1), optBIC(1), optSBC(1), optCAT(1), optMDL(1), optPHI(1), optJEW(1), optHAR(1)];end;
C=[FPE;AIC;BIC;SBC;MDL;CATcrit;PHI;JEW;HAR(:)']';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -