📄 icamf.m
字号:
logZ0=sum(sum(logZ0terms));function [logZ0] = logZ0_mog(gamma,lambda,par)oN = ones(size(gamma,2),1) ;K = length(par.S(par.Sindx(1)).pi) ;oK = ones(K,1) ;logZ0 = 0 ;for i = 1:length(par.Sindx) % loop over sources cindx = par.Sindx(i) ; cgamma = gamma(i,:) ; clambda = lambda(i,:) ; % 1 * N logpi = log(par.S(cindx).pi) ; % K * 1 cmu = par.S(cindx).mu ; % K * 1 cSigma = par.S(cindx).Sigma ; % K * 1 mu2dSigma = cmu .^ 2 ./ cSigma ; musqrtSigma = cmu .* sqrt(cSigma) ; resp = logpi(:,oN) - 0.5 * log( 1 + cSigma * clambda ) .... + 0.5 * (sqrt(cSigma) * cgamma + musqrtSigma(:,oN) ) .^2 ./ ... ( 1 + cSigma * clambda ) - 0.5 * mu2dSigma(:,oN) ; % K * N maxresp = max( resp, [] , 1 ) ; logZ0 = logZ0 + sum ( maxresp + log( sum( exp( resp - maxresp(oK,:) ) , 1 ) ) ) ; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% different math help function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function y = logdet(A)% log(det(A)) where A is positive-definite.% This is faster and more stable than using log(det(A)).[U,p] = chol(A);if p y=0; % if not positive definite return 0 , could also be a log(eps)else y = 2*sum(log(diag(U)));end% Phi (error) functionfunction y=Phi(x)% Phi(x) = int_-infty^x Dz z=abs(x/sqrt(2));t=1.0./(1.0+0.5*z);y=0.5*t.*exp(-z.*z-1.26551223+t.*(1.00002368+... t.*(0.37409196+t.*(0.09678418+t.*(-0.18628806+t.*(0.27886807+... t.*(-1.13520398+t.*(1.48851587+t.*(-0.82215223+t.*0.17087277)))))))));y=(x<=0.0).*y+(x>0).*(1.0-y);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% conjugated gradient minimizer by C Rasmussen %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5);% Minimize a continuous differentialble multivariate function. Starting point% is given by "X" (D by 1), and the function named in the string "f", must% return a function value and a vector of partial derivatives. The Polack-% Ribiere flavour of conjugate gradients is used to compute search directions,% and a line search using quadratic and cubic polynomial approximations and the% Wolfe-Powell stopping criteria is used together with the slope ratio method% for guessing initial step sizes. Additionally a bunch of checks are made to% make sure that exploration is taking place and that extrapolation will not% be unboundedly large. The "length" gives the length of the run: if it is% positive, it gives the maximum number of line searches, if negative its% absolute gives the maximum allowed number of function evaluations. You can% (optionally) give "length" a second component, which will indicate the% reduction in function value to be expected in the first line-search (defaults% to 1.0). The function returns when either its length is up, or if no further% progress can be made (ie, we are at a minimum, or so close that due to% numerical problems, we cannot get any closer). If the function terminates% within a few iterations, it could be an indication that the function value% and derivatives are not consistent (ie, there may be a bug in the% implementation of your "f" function). The function returns the found% solution "X", a vector of function values "fX" indicating the progress made% and "i" the number of iterations (line searches or function evaluations,% depending on the sign of "length") used.%% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5)%% See also: checkgrad %% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13RHO = 0.01; % a bunch of constants for line searchesSIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditionsINT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracketEXT = 3.0; % extrapolate maximum 3 times the current bracketMAX = 20; % max 20 function evaluations per line searchRATIO = 100; % maximum allowed slope ratioargstr = [f, '(X']; % compose string used to call functionfor i = 1:(nargin - 3) argstr = [argstr, ',P', int2str(i)];endargstr = [argstr, ')'];if max(size(length)) == 2, red=length(2); length=length(1); else red=1; endif length>0, S=['Linesearch']; else S=['Function evaluation']; end i = 0; % zero the run length counterls_failed = 0; % no previous line search has failedfX = [];[f1 df1] = eval(argstr); % get function value and gradienti = i + (length<0); % count epochs?!s = -df1; % search direction is steepestd1 = -s'*s; % this is the slopez1 = red/(1-d1); % initial step is red/(|s|+1)while i < abs(length) % while not finished i = i + (length>0); % count iterations?! X0 = X; f0 = f1; df0 = df1; % make a copy of current values X = X + z1*s; % begin line search [f2 df2] = eval(argstr); i = i + (length<0); % count epochs?! d2 = df2'*s; f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1 if length>0, M = MAX; else M = min(MAX, -length-i); end success = 0; limit = -1; % initialize quanteties while 1 while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0) limit = z1; % tighten the bracket if f2 > f1 z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit else A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit B = 3*(f3-f2)-z3*(d3+2*d2); z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok! end if isnan(z2) | isinf(z2) z2 = z3/2; % if we had a numerical problem then bisect end z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits z1 = z1 + z2; % update the step X = X + z2*s; [f2 df2] = eval(argstr); M = M - 1; i = i + (length<0); % count epochs?! d2 = df2'*s; z3 = z3-z2; % z3 is now relative to the location of z2 end if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1 break; % this is a failure elseif d2 > SIG*d1 success = 1; break; % success elseif M == 0 break; % failure end A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation B = 3*(f3-f2)-z3*(d3+2*d2); z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok! if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign? if limit < -0.5 % if we have no upper limit z2 = z1 * (EXT-1); % the extrapolate the maximum amount else z2 = (limit-z1)/2; % otherwise bisect end elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max? z2 = (limit-z1)/2; % bisect elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit z2 = z1*(EXT-1.0); % set to extrapolation limit elseif z2 < -z3*INT z2 = -z3*INT; elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit? z2 = (limit-z1)*(1.0-INT); end f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2 z1 = z1 + z2; X = X + z2*s; % update current estimates [f2 df2] = eval(argstr); M = M - 1; i = i + (length<0); % count epochs?! d2 = df2'*s; end % end of line search if success % if line search succeeded f1 = f2; fX = [fX' f1]'; fprintf('%s %6i; Value %4.6e\r', S, i, f1); s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction tmp = df1; df1 = df2; df2 = tmp; % swap derivatives d2 = df1'*s; if d2 > 0 % new slope must be negative s = -df1; % otherwise use steepest direction d2 = -s'*s; end z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO d1 = d2; ls_failed = 0; % this line search did not fail else X = X0; f1 = f0; df1 = df0; % restore point from before failed line search if ls_failed | i > abs(length) % line search failed twice in a row break; % or we ran out of time, so we give up end tmp = df1; df1 = df2; df2 = tmp; % swap derivatives s = -df1; % try steepest d1 = -s'*s; z1 = 1/(1-d1); ls_failed = 1; % this line search failed endendfprintf('\n');function [X, info, perf, D] = ucminf(fun,par, x0, opts, D0)%UCMINF BFGS method for unconstrained nonlinear optimization:% Find xm = argmin{f(x)} , where x is an n-vector and the scalar% function F with gradient g (with elements g(i) = DF/Dx_i )% must be given by a MATLAB function with with declaration% function [F, g] = fun(x, par)% par holds parameters of the function. It may be dummy. % % Call: [X, info {, perf {, D}}] = ucminf(fun,par, x0, opts {,D0})%% Input parameters% fun : String with the name of the function.% par : Parameters of the function. May be empty.% x0 : Starting guess for x .% opts : Vector with 4 elements:% opts(1) : Expected length of initial step% opts(2:4) used in stopping criteria:% ||g||_inf <= opts(2) or % ||dx||_2 <= opts(3)*(opts(3) + ||x||_2) or% no. of function evaluations exceeds opts(4) . % Any illegal element in opts is replaced by its% default value, [1 1e-4*||g(x0)||_inf 1e-8 100]% D0 : (optional) If present, then approximate inverse Hessian% at x0 . Otherwise, D0 := I % Output parameters% X : If perf is present, then array, holding the iterates% columnwise. Otherwise, computed solution vector.% info : Performance information, vector with 6 elements:% info(1:3) = final values of [f(x) ||g||_inf ||dx||_2] % info(4:5) = no. of iteration steps and evaluations of (F,g)% info(6) = 1 : Stopped by small gradient% 2 : Stopped by small x-step% 3 : Stopped by opts(4) .% 4 : Stopped by zero step.% perf : (optional). If present, then array, holding % perf(1:2,:) = values of f(x) and ||g||_inf% perf(3:5,:) = Line search info: values of % alpha, phi'(alpha), no. fct. evals. % perf(6,:) = trust region radius.% D : (optional). If present, then array holding the % approximate inverse Hessian at X(:,end) .% Hans Bruun Nielsen, IMM, DTU. 00.12.18 / 02.01.22 % Check call [x n F g] = check(fun,par,x0,opts); if nargin > 4, D = checkD(n,D0); fst = 0; else, D = eye(n); fst = 1; end % Finish initialization k = 1; kmax = opts(4); neval = 1; ng = norm(g,inf); Delta = opts(1); Trace = nargout > 2; if Trace X = x(:)*ones(1,kmax+1); perf = [F; ng; zeros(3,1); Delta]*ones(1,kmax+1); end found = ng <= opts(2); h = zeros(size(x)); nh = 0; ngs = ng * ones(1,3); while ~found % Previous values xp = x; gp = g; Fp = F; nx = norm(x); ngs = [ngs(2:3) ng]; h = D*(-g(:)); nh = norm(h); red = 0; if nh <= opts(3)*(opts(3) + nx), found = 2; else if fst | nh > Delta % Scale to ||h|| = Delta h = (Delta / nh) * h; nh = Delta; fst = 0; red = 1; end k = k+1; % Line search [al F g dval slrat] = softline(fun,par,x,F,g, h); if al < 1 % Reduce Delta Delta = .35 * Delta; elseif red & (slrat > .7) % Increase Delta Delta = 3*Delta; end % Update x, neval and ||g|| x = x + al*h; neval = neval + dval; ng = norm(g,inf); if Trace X(:,k) = x(:); perf(:,k) = [F; ng; al; dot(h,g); dval; Delta]; end h = x - xp; nh = norm(h); if nh == 0, found = 4; else y = g - gp; yh = dot(y,h); if yh > sqrt(eps) * nh * norm(y) % Update D v = D*y(:); yv = dot(y,v); a = (1 + yv/yh)/yh; w = (a/2)*h(:) - v/yh; D = D + w*h' + h*w'; end % update D % Check stopping criteria thrx = opts(3)*(opts(3) + norm(x)); if ng <= opts(2), found = 1; elseif nh <= thrx, found = 2; elseif neval >= kmax, found = 3; % elseif neval > 20 & ng > 1.1*max(ngs), found = 5; else, Delta = max(Delta, 2*thrx); end end end % Nonzero h end % iteration % Set return values if Trace X = X(:,1:k); perf = perf(:,1:k); else, X = x; end info = [F ng nh k-1 neval found];% ========== auxiliary functions =================================function [x,n, F,g, opts] = check(fun,par,x0,opts0)% Check function call x = x0(:); sx = size(x); n = max(sx); if (min(sx) > 1) error('x0 should be a vector'), end [F g] = feval(fun,x,par); sf = size(F); sg = size(g); if any(sf-1) | ~isreal(F) error('F should be a real valued scalar'), end if (min(sg) ~= 1) | (max(sg) ~= n) error('g should be a vector of the same length as x'), end so = size(opts0); if (min(so) ~= 1) | (max(so) < 4) | any(~isreal(opts0(1:4))) error('opts should be a real valued vector of length 4'), end opts = opts0(1:4); opts = opts(:).'; i = find(opts <= 0); if length(i) % Set default values d = [1 1e-4*norm(g, inf) 1e-8 100]; opts(i) = d(i); end % ---------- end of check ---------------------------------------function D = checkD(n,D0)% Check given inverse Hessian D = D0; sD = size(D); if any(sD - n) error(sprintf('D should be a square matrix of size %g',n)), end % Check symmetry dD = D - D'; ndD = norm(dD(:),inf); if ndD > 10*eps*norm(D(:),inf) error('The given D0 is not symmetric'), end if ndD, D = (D + D')/2; end % Symmetrize [R p] = chol(D); if p error('The given D0 is not positive definite'), end function [alpha,fn,gn,neval,slrat] = ... softline(fun,fpar, x,f,g, h)% Soft line search: Find alpha = argmin_a{f(x+a*h)} % Default return values alpha = 0; fn = f; gn = g; neval = 0; slrat = 1; n = length(x); % Initial values dfi0 = dot(h,gn); if dfi0 >= 0, return, end fi0 = f; slope0 = .05*dfi0; slopethr = .995*dfi0; dfia = dfi0; stop = 0; ok = 0; neval = 0; b = 1; while ~stop [fib g] = feval(fun,x+b*h,fpar); neval = neval + 1; dfib = dot(g,h); if b == 1, slrat = dfib/dfi0; end if fib <= fi0 + slope0*b % New lower bound if dfib > abs(slopethr), stop = 1; else alpha = b; fn = fib; gn = g; dfia = dfib; ok = 1; slrat = dfib/dfi0; if (neval < 5) & (b < 2) & (dfib < slopethr) % Augment right hand end b = 2*b; else, stop = 1; end end else, stop = 1; end end stop = ok; xfd = [alpha fn dfia; b fib dfib; b fib dfib]; while ~stop c = interpolate(xfd,n); [fic g] = feval(fun, x+c*h, fpar); neval = neval+1; xfd(3,:) = [c fic dot(g,h)]; if fic < fi0 + slope0*c % New lower bound xfd(1,:) = xfd(3,:); ok = 1; alpha = c; fn = fic; gn = g; slrat = xfd(3,3)/dfi0; else, xfd(2,:) = xfd(3,:); ok = 0; end % Check stopping criteria ok = ok & abs(xfd(3,3)) <= abs(slopethr); stop = ok | neval >= 5 | diff(xfd(1:2,1)) <= 0; end % while %------------ end of softline ------------------------------ function alpha = interpolate(xfd,n);% Minimizer of parabola given by% xfd(1:2,1:3) = [a fi(a) fi'(a); b fi(b) dummy] a = xfd(1,1); b = xfd(2,1); d = b - a; dfia = xfd(1,3); C = diff(xfd(1:2,2)) - d*dfia; if C >= 5*n*eps*b % Minimizer exists A = a - .5*dfia*(d^2/C); d = 0.1*d; alpha = min(max(a+d, A), b-d); else alpha = (a+b)/2; end%------------ end of interpolate --------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -