⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 This program can encode the YUV vdieo format to H.264 and decode it.
💻 C
📖 第 1 页 / 共 4 页
字号:
 */
void itrans(struct img_par *img, //!< image parameters
            int ioff,            //!< index to 4x4 block
            int joff,            //!<
            int i0,              //!<
            int j0,
            int chroma,
            int yuv)
{
  int i,j;
  int ipos;
  static int m5[4], m6[4];
  int *m7;

  Boolean lossless_qpprime = (Boolean) (((img->qp + img->bitdepth_luma_qp_scale) == 0) && (img->lossless_qpprime_flag == 1));
  int max_imgpel_value = chroma ? img->max_imgpel_value_uv : img->max_imgpel_value;
  imgpel (*mpr)[16] = img->mpr[yuv];

  if (!lossless_qpprime)
  {
    // horizontal
    for (j = 0; j < BLOCK_SIZE; j++)
    {
      memcpy(&m5[0],&img->cof[i0][j0][j][0], BLOCK_SIZE * sizeof(int));
      m7 = &(img->m7[j][0]);

      m6[0] =  m5[0] + m5[2];
      m6[1] =  m5[0] - m5[2];
      m6[2] = (m5[1] >> 1) - m5[3];
      m6[3] =  m5[1] + (m5[3] >> 1);

      m7[0] = m6[0] + m6[3];
      m7[1] = m6[1] + m6[2];
      m7[2] = m6[1] - m6[2];
      m7[3] = m6[0] - m6[3];      
    }

    // vertical
    for (i = 0; i < BLOCK_SIZE; i++)
    {
      ipos = i + ioff;

      m5[0]=img->m7[0][i];
      m5[1]=img->m7[1][i];
      m5[2]=img->m7[2][i];
      m5[3]=img->m7[3][i];

      m6[0] =  m5[0] + m5[2];
      m6[1] =  m5[0] - m5[2];
      m6[2] = (m5[1] >> 1) - m5[3];
      m6[3] =  m5[1] + (m5[3] >> 1);

      img->m7[0][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[0] + m6[3] + ((long)mpr[    joff][ipos] << DQ_BITS)), DQ_BITS));
      img->m7[1][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[1] + m6[2] + ((long)mpr[1 + joff][ipos] << DQ_BITS)), DQ_BITS));
      img->m7[2][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[1] - m6[2] + ((long)mpr[2 + joff][ipos] << DQ_BITS)), DQ_BITS));
      img->m7[3][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[0] - m6[3] + ((long)mpr[3 + joff][ipos] << DQ_BITS)), DQ_BITS));
    }
  }
  else
  {
      for (j = 0; j < BLOCK_SIZE; j++)
        for (i = 0; i < BLOCK_SIZE; i++)
        img->m7[j][i] = iClip1(max_imgpel_value, (img->cof[i0][j0][j][i] + (long)mpr[j + joff][i + ioff]));
  }
}

/*!
 ************************************************************************
 * \brief
 *    For mapping the q-matrix to the active id and calculate quantisation values
 *
 * \param pps
 *    Picture parameter set
 * \param sps
 *    Sequence parameter set
 *
 ************************************************************************
 */
void AssignQuantParam(pic_parameter_set_rbsp_t* pps, seq_parameter_set_rbsp_t* sps)
{
  int i;
  int n_ScalingList;

  if(!pps->pic_scaling_matrix_present_flag && !sps->seq_scaling_matrix_present_flag)
  {
    for(i=0; i<12; i++)
      qmatrix[i] = (i<6) ? quant_org:quant8_org;
  }
  else
  {
    n_ScalingList = (sps->chroma_format_idc != YUV444) ? 8 : 12;
    if(sps->seq_scaling_matrix_present_flag) // check sps first
    {
      for(i=0; i<n_ScalingList; i++)
      {
        if(i<6)
        {
          if(!sps->seq_scaling_list_present_flag[i]) // fall-back rule A
          {
            if((i==0) || (i==3))
              qmatrix[i] = (i==0) ? quant_intra_default:quant_inter_default;
            else
              qmatrix[i] = qmatrix[i-1];
          }
          else
          {
            if(sps->UseDefaultScalingMatrix4x4Flag[i])
              qmatrix[i] = (i<3) ? quant_intra_default:quant_inter_default;
            else
              qmatrix[i] = sps->ScalingList4x4[i];
          }
        }
        else
        {
          if(!sps->seq_scaling_list_present_flag[i]) // fall-back rule A
          {
            if((i==6) || (i==7))
              qmatrix[i] = (i==6) ? quant8_intra_default:quant8_inter_default;
            else
              qmatrix[i] = qmatrix[i-2];
          }
          else
          {
            if(sps->UseDefaultScalingMatrix8x8Flag[i-6])
              qmatrix[i] = (i==6 || i==8 || i==10) ? quant8_intra_default:quant8_inter_default;
            else
              qmatrix[i] = sps->ScalingList8x8[i-6];
          }
        }
      }
    }

    if(pps->pic_scaling_matrix_present_flag) // then check pps
    {
      for(i=0; i<n_ScalingList; i++)
      {
        if(i<6)
        {
          if(!pps->pic_scaling_list_present_flag[i]) // fall-back rule B
          {
            if((i==0) || (i==3))
            {
              if(!sps->seq_scaling_matrix_present_flag)
                qmatrix[i] = (i==0) ? quant_intra_default:quant_inter_default;
            }
            else
              qmatrix[i] = qmatrix[i-1];
          }
          else
          {
            if(pps->UseDefaultScalingMatrix4x4Flag[i])
              qmatrix[i] = (i<3) ? quant_intra_default:quant_inter_default;
            else
              qmatrix[i] = pps->ScalingList4x4[i];
          }
        }
        else
        {
          if(!pps->pic_scaling_list_present_flag[i]) // fall-back rule B
          {
            if((i==6) || (i==7))
            {
              if(!sps->seq_scaling_matrix_present_flag)
                qmatrix[i] = (i==6) ? quant8_intra_default:quant8_inter_default;
            }
            else  
              qmatrix[i] = qmatrix[i-2];
          }
          else
          {
            if(pps->UseDefaultScalingMatrix8x8Flag[i-6])
              qmatrix[i] = (i==6 || i==8 || i==10) ? quant8_intra_default:quant8_inter_default;
            else
              qmatrix[i] = pps->ScalingList8x8[i-6];
          }
        }
      }
    }
  }

  CalculateQuantParam();
  if(pps->transform_8x8_mode_flag)
    CalculateQuant8Param();
}

/*!
 ************************************************************************
 * \brief
 *    For calculating the quantisation values at frame level
 *
 ************************************************************************
 */
void CalculateQuantParam()
{
  int i, j, k, temp;

  for(k=0; k<6; k++)
    for(j=0; j<4; j++)
      for(i=0; i<4; i++)
      {
        temp = (i<<2)+j;
        InvLevelScale4x4Luma_Intra[k][i][j]      = dequant_coef[k][j][i]*qmatrix[0][temp];
        InvLevelScale4x4Chroma_Intra[0][k][i][j] = dequant_coef[k][j][i]*qmatrix[1][temp];
        InvLevelScale4x4Chroma_Intra[1][k][i][j] = dequant_coef[k][j][i]*qmatrix[2][temp];

        InvLevelScale4x4Luma_Inter[k][i][j]      = dequant_coef[k][j][i]*qmatrix[3][temp];
        InvLevelScale4x4Chroma_Inter[0][k][i][j] = dequant_coef[k][j][i]*qmatrix[4][temp];
        InvLevelScale4x4Chroma_Inter[1][k][i][j] = dequant_coef[k][j][i]*qmatrix[5][temp];
      }
}

/*!
 ***********************************************************************
 * \brief
 *    Luma DC inverse transform
 ***********************************************************************
 */
void itrans_2(struct img_par *img) //!< image parameters
{
  int i,j;
  int M5[4];
  int M6[4];

  int qp_per = (img->qp + img->bitdepth_luma_qp_scale - MIN_QP)/6;
  int qp_rem = (img->qp + img->bitdepth_luma_qp_scale - MIN_QP)%6;

  // horizontal
  for (j=0;j<4;j++)
  {
    M5[0]=img->cof[0][j][0][0];
    M5[1]=img->cof[1][j][0][0];
    M5[2]=img->cof[2][j][0][0];
    M5[3]=img->cof[3][j][0][0];

    M6[0]=M5[0]+M5[2];
    M6[1]=M5[0]-M5[2];
    M6[2]=M5[1]-M5[3];
    M6[3]=M5[1]+M5[3];

    img->cof[0][j][0][0] = M6[0]+M6[3];
    img->cof[1][j][0][0] = M6[1]+M6[2];
    img->cof[2][j][0][0] = M6[1]-M6[2];
    img->cof[3][j][0][0] = M6[0]-M6[3];
  }

  // vertical
  for (i=0;i<4;i++)
  {
    M5[0]=img->cof[i][0][0][0];
    M5[1]=img->cof[i][1][0][0];
    M5[2]=img->cof[i][2][0][0];
    M5[3]=img->cof[i][3][0][0];

    M6[0]=M5[0]+M5[2];
    M6[1]=M5[0]-M5[2];
    M6[2]=M5[1]-M5[3];
    M6[3]=M5[1]+M5[3];

    img->cof[i][0][0][0] = rshift_rnd((((M6[0]+M6[3])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
    img->cof[i][1][0][0] = rshift_rnd((((M6[1]+M6[2])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
    img->cof[i][2][0][0] = rshift_rnd((((M6[1]-M6[2])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
    img->cof[i][3][0][0] = rshift_rnd((((M6[0]-M6[3])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
  }
}


void itrans_sp(struct img_par *img,  //!< image parameters
               int ioff,             //!< index to 4x4 block
               int joff,             //!<
               int i0,               //!<
               int j0)               //!<
{
  int i,j,i1,j1;
  int m5[4];
  int m6[4];
  int predicted_block[BLOCK_SIZE][BLOCK_SIZE],ilev;

  int qp_per = (img->qp-MIN_QP)/6;
  int qp_rem = (img->qp-MIN_QP)%6;
  int q_bits    = Q_BITS+qp_per;

  int qp_per_sp = (img->qpsp-MIN_QP)/6;
  int qp_rem_sp = (img->qpsp-MIN_QP)%6;
  int q_bits_sp = Q_BITS+qp_per_sp;
  int qp_const2 = (1<<q_bits_sp)/2;  //sp_pred
  imgpel (*mpr)[16] = img->mpr[LumaComp];
  if (img->type == SI_SLICE) //ES modified
  {
    qp_per = (img->qpsp-MIN_QP)/6;
    qp_rem = (img->qpsp-MIN_QP)%6;
    q_bits = Q_BITS+qp_per;
  }

  for (j=0; j< BLOCK_SIZE; j++)
  for (i=0; i< BLOCK_SIZE; i++)
      predicted_block[i][j]=mpr[j+joff][i+ioff];
  for (j=0; j < BLOCK_SIZE; j++)
  {
    for (i=0; i < 2; i++)
    {
      i1=3-i;
      m5[i]=predicted_block[i][j]+predicted_block[i1][j];
      m5[i1]=predicted_block[i][j]-predicted_block[i1][j];
    }
    predicted_block[0][j]=(m5[0]+m5[1]);
    predicted_block[2][j]=(m5[0]-m5[1]);
    predicted_block[1][j]=m5[3]*2+m5[2];
    predicted_block[3][j]=m5[3]-m5[2]*2;
  }

  //  Vertival transform

  for (i=0; i < BLOCK_SIZE; i++)
  {
    for (j=0; j < 2; j++)
    {
      j1=3-j;
      m5[j]=predicted_block[i][j]+predicted_block[i][j1];
      m5[j1]=predicted_block[i][j]-predicted_block[i][j1];
    }
    predicted_block[i][0]=(m5[0]+m5[1]);
    predicted_block[i][2]=(m5[0]-m5[1]);
    predicted_block[i][1]=m5[3]*2+m5[2];
    predicted_block[i][3]=m5[3]-m5[2]*2;
  }

  for (j=0;j<BLOCK_SIZE;j++)
  for (i=0;i<BLOCK_SIZE;i++)
  {
    // recovering coefficient since they are already dequantized earlier
    img->cof[i0][j0][j][i]=(img->cof[i0][j0][j][i] >> qp_per) / dequant_coef[qp_rem][i][j];
    if(img->sp_switch || img->type==SI_SLICE)  //M.W. patched for SI
    {
      ilev=(iabs(predicted_block[i][j]) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp; //ES added
      ilev= isignab(ilev,predicted_block[i][j])+ img->cof[i0][j0][j][i];                           //ES added
      img->cof[i0][j0][j][i] = isignab(iabs(ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp ,ilev) ; //ES added
    }                                                                                             //ES added
    else
    {                                                                                          //ES added
      ilev=((img->cof[i0][j0][j][i]*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6)+predicted_block[i][j] ;
      img->cof[i0][j0][j][i]=isignab((iabs(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp, ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp;
    }
  }
  // horizontal
  for (j=0;j<BLOCK_SIZE;j++)
  {
    for (i=0;i<BLOCK_SIZE;i++)
    {
      m5[i]=img->cof[i0][j0][j][i];
    }
    m6[0]=(m5[0]+m5[2]);
    m6[1]=(m5[0]-m5[2]);
    m6[2]=(m5[1]>>1)-m5[3];
    m6[3]=m5[1]+(m5[3]>>1);

    for (i=0;i<2;i++)
    {
      i1=3-i;
      img->m7[j][i]=m6[i]+m6[i1];
      img->m7[j][i1]=m6[i]-m6[i1];
    }
  }
  // vertical
  for (i=0;i<BLOCK_SIZE;i++)
  {
    for (j=0;j<BLOCK_SIZE;j++)
      m5[j]=img->m7[j][i];

    m6[0]=(m5[0]+m5[2]);
    m6[1]=(m5[0]-m5[2]);
    m6[2]=(m5[1]>>1)-m5[3];
    m6[3]=m5[1]+(m5[3]>>1);

    for (j=0;j<2;j++)
    {
      j1=3-j;
      img->m7[j][i] =iClip1(img->max_imgpel_value,rshift_rnd_sf((m6[j]+m6[j1]),DQ_BITS));
      img->m7[j1][i]=iClip1(img->max_imgpel_value,rshift_rnd_sf((m6[j]-m6[j1]),DQ_BITS));
    }
  }
}

/*!
 ***********************************************************************
 * \brief
 *    The routine performs transform,quantization,inverse transform, adds the diff.
 *    to the prediction and writes the result to the decoded luma frame. Includes the
 *    RD constrained quantization also.
 *
 * \par Input:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -