📄 block.c
字号:
*/
void itrans(struct img_par *img, //!< image parameters
int ioff, //!< index to 4x4 block
int joff, //!<
int i0, //!<
int j0,
int chroma,
int yuv)
{
int i,j;
int ipos;
static int m5[4], m6[4];
int *m7;
Boolean lossless_qpprime = (Boolean) (((img->qp + img->bitdepth_luma_qp_scale) == 0) && (img->lossless_qpprime_flag == 1));
int max_imgpel_value = chroma ? img->max_imgpel_value_uv : img->max_imgpel_value;
imgpel (*mpr)[16] = img->mpr[yuv];
if (!lossless_qpprime)
{
// horizontal
for (j = 0; j < BLOCK_SIZE; j++)
{
memcpy(&m5[0],&img->cof[i0][j0][j][0], BLOCK_SIZE * sizeof(int));
m7 = &(img->m7[j][0]);
m6[0] = m5[0] + m5[2];
m6[1] = m5[0] - m5[2];
m6[2] = (m5[1] >> 1) - m5[3];
m6[3] = m5[1] + (m5[3] >> 1);
m7[0] = m6[0] + m6[3];
m7[1] = m6[1] + m6[2];
m7[2] = m6[1] - m6[2];
m7[3] = m6[0] - m6[3];
}
// vertical
for (i = 0; i < BLOCK_SIZE; i++)
{
ipos = i + ioff;
m5[0]=img->m7[0][i];
m5[1]=img->m7[1][i];
m5[2]=img->m7[2][i];
m5[3]=img->m7[3][i];
m6[0] = m5[0] + m5[2];
m6[1] = m5[0] - m5[2];
m6[2] = (m5[1] >> 1) - m5[3];
m6[3] = m5[1] + (m5[3] >> 1);
img->m7[0][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[0] + m6[3] + ((long)mpr[ joff][ipos] << DQ_BITS)), DQ_BITS));
img->m7[1][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[1] + m6[2] + ((long)mpr[1 + joff][ipos] << DQ_BITS)), DQ_BITS));
img->m7[2][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[1] - m6[2] + ((long)mpr[2 + joff][ipos] << DQ_BITS)), DQ_BITS));
img->m7[3][i] = iClip1(max_imgpel_value, rshift_rnd_sf((m6[0] - m6[3] + ((long)mpr[3 + joff][ipos] << DQ_BITS)), DQ_BITS));
}
}
else
{
for (j = 0; j < BLOCK_SIZE; j++)
for (i = 0; i < BLOCK_SIZE; i++)
img->m7[j][i] = iClip1(max_imgpel_value, (img->cof[i0][j0][j][i] + (long)mpr[j + joff][i + ioff]));
}
}
/*!
************************************************************************
* \brief
* For mapping the q-matrix to the active id and calculate quantisation values
*
* \param pps
* Picture parameter set
* \param sps
* Sequence parameter set
*
************************************************************************
*/
void AssignQuantParam(pic_parameter_set_rbsp_t* pps, seq_parameter_set_rbsp_t* sps)
{
int i;
int n_ScalingList;
if(!pps->pic_scaling_matrix_present_flag && !sps->seq_scaling_matrix_present_flag)
{
for(i=0; i<12; i++)
qmatrix[i] = (i<6) ? quant_org:quant8_org;
}
else
{
n_ScalingList = (sps->chroma_format_idc != YUV444) ? 8 : 12;
if(sps->seq_scaling_matrix_present_flag) // check sps first
{
for(i=0; i<n_ScalingList; i++)
{
if(i<6)
{
if(!sps->seq_scaling_list_present_flag[i]) // fall-back rule A
{
if((i==0) || (i==3))
qmatrix[i] = (i==0) ? quant_intra_default:quant_inter_default;
else
qmatrix[i] = qmatrix[i-1];
}
else
{
if(sps->UseDefaultScalingMatrix4x4Flag[i])
qmatrix[i] = (i<3) ? quant_intra_default:quant_inter_default;
else
qmatrix[i] = sps->ScalingList4x4[i];
}
}
else
{
if(!sps->seq_scaling_list_present_flag[i]) // fall-back rule A
{
if((i==6) || (i==7))
qmatrix[i] = (i==6) ? quant8_intra_default:quant8_inter_default;
else
qmatrix[i] = qmatrix[i-2];
}
else
{
if(sps->UseDefaultScalingMatrix8x8Flag[i-6])
qmatrix[i] = (i==6 || i==8 || i==10) ? quant8_intra_default:quant8_inter_default;
else
qmatrix[i] = sps->ScalingList8x8[i-6];
}
}
}
}
if(pps->pic_scaling_matrix_present_flag) // then check pps
{
for(i=0; i<n_ScalingList; i++)
{
if(i<6)
{
if(!pps->pic_scaling_list_present_flag[i]) // fall-back rule B
{
if((i==0) || (i==3))
{
if(!sps->seq_scaling_matrix_present_flag)
qmatrix[i] = (i==0) ? quant_intra_default:quant_inter_default;
}
else
qmatrix[i] = qmatrix[i-1];
}
else
{
if(pps->UseDefaultScalingMatrix4x4Flag[i])
qmatrix[i] = (i<3) ? quant_intra_default:quant_inter_default;
else
qmatrix[i] = pps->ScalingList4x4[i];
}
}
else
{
if(!pps->pic_scaling_list_present_flag[i]) // fall-back rule B
{
if((i==6) || (i==7))
{
if(!sps->seq_scaling_matrix_present_flag)
qmatrix[i] = (i==6) ? quant8_intra_default:quant8_inter_default;
}
else
qmatrix[i] = qmatrix[i-2];
}
else
{
if(pps->UseDefaultScalingMatrix8x8Flag[i-6])
qmatrix[i] = (i==6 || i==8 || i==10) ? quant8_intra_default:quant8_inter_default;
else
qmatrix[i] = pps->ScalingList8x8[i-6];
}
}
}
}
}
CalculateQuantParam();
if(pps->transform_8x8_mode_flag)
CalculateQuant8Param();
}
/*!
************************************************************************
* \brief
* For calculating the quantisation values at frame level
*
************************************************************************
*/
void CalculateQuantParam()
{
int i, j, k, temp;
for(k=0; k<6; k++)
for(j=0; j<4; j++)
for(i=0; i<4; i++)
{
temp = (i<<2)+j;
InvLevelScale4x4Luma_Intra[k][i][j] = dequant_coef[k][j][i]*qmatrix[0][temp];
InvLevelScale4x4Chroma_Intra[0][k][i][j] = dequant_coef[k][j][i]*qmatrix[1][temp];
InvLevelScale4x4Chroma_Intra[1][k][i][j] = dequant_coef[k][j][i]*qmatrix[2][temp];
InvLevelScale4x4Luma_Inter[k][i][j] = dequant_coef[k][j][i]*qmatrix[3][temp];
InvLevelScale4x4Chroma_Inter[0][k][i][j] = dequant_coef[k][j][i]*qmatrix[4][temp];
InvLevelScale4x4Chroma_Inter[1][k][i][j] = dequant_coef[k][j][i]*qmatrix[5][temp];
}
}
/*!
***********************************************************************
* \brief
* Luma DC inverse transform
***********************************************************************
*/
void itrans_2(struct img_par *img) //!< image parameters
{
int i,j;
int M5[4];
int M6[4];
int qp_per = (img->qp + img->bitdepth_luma_qp_scale - MIN_QP)/6;
int qp_rem = (img->qp + img->bitdepth_luma_qp_scale - MIN_QP)%6;
// horizontal
for (j=0;j<4;j++)
{
M5[0]=img->cof[0][j][0][0];
M5[1]=img->cof[1][j][0][0];
M5[2]=img->cof[2][j][0][0];
M5[3]=img->cof[3][j][0][0];
M6[0]=M5[0]+M5[2];
M6[1]=M5[0]-M5[2];
M6[2]=M5[1]-M5[3];
M6[3]=M5[1]+M5[3];
img->cof[0][j][0][0] = M6[0]+M6[3];
img->cof[1][j][0][0] = M6[1]+M6[2];
img->cof[2][j][0][0] = M6[1]-M6[2];
img->cof[3][j][0][0] = M6[0]-M6[3];
}
// vertical
for (i=0;i<4;i++)
{
M5[0]=img->cof[i][0][0][0];
M5[1]=img->cof[i][1][0][0];
M5[2]=img->cof[i][2][0][0];
M5[3]=img->cof[i][3][0][0];
M6[0]=M5[0]+M5[2];
M6[1]=M5[0]-M5[2];
M6[2]=M5[1]-M5[3];
M6[3]=M5[1]+M5[3];
img->cof[i][0][0][0] = rshift_rnd((((M6[0]+M6[3])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
img->cof[i][1][0][0] = rshift_rnd((((M6[1]+M6[2])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
img->cof[i][2][0][0] = rshift_rnd((((M6[1]-M6[2])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
img->cof[i][3][0][0] = rshift_rnd((((M6[0]-M6[3])*InvLevelScale4x4Luma_Intra[qp_rem][0][0]) << qp_per), 6);
}
}
void itrans_sp(struct img_par *img, //!< image parameters
int ioff, //!< index to 4x4 block
int joff, //!<
int i0, //!<
int j0) //!<
{
int i,j,i1,j1;
int m5[4];
int m6[4];
int predicted_block[BLOCK_SIZE][BLOCK_SIZE],ilev;
int qp_per = (img->qp-MIN_QP)/6;
int qp_rem = (img->qp-MIN_QP)%6;
int q_bits = Q_BITS+qp_per;
int qp_per_sp = (img->qpsp-MIN_QP)/6;
int qp_rem_sp = (img->qpsp-MIN_QP)%6;
int q_bits_sp = Q_BITS+qp_per_sp;
int qp_const2 = (1<<q_bits_sp)/2; //sp_pred
imgpel (*mpr)[16] = img->mpr[LumaComp];
if (img->type == SI_SLICE) //ES modified
{
qp_per = (img->qpsp-MIN_QP)/6;
qp_rem = (img->qpsp-MIN_QP)%6;
q_bits = Q_BITS+qp_per;
}
for (j=0; j< BLOCK_SIZE; j++)
for (i=0; i< BLOCK_SIZE; i++)
predicted_block[i][j]=mpr[j+joff][i+ioff];
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=predicted_block[i][j]+predicted_block[i1][j];
m5[i1]=predicted_block[i][j]-predicted_block[i1][j];
}
predicted_block[0][j]=(m5[0]+m5[1]);
predicted_block[2][j]=(m5[0]-m5[1]);
predicted_block[1][j]=m5[3]*2+m5[2];
predicted_block[3][j]=m5[3]-m5[2]*2;
}
// Vertival transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=predicted_block[i][j]+predicted_block[i][j1];
m5[j1]=predicted_block[i][j]-predicted_block[i][j1];
}
predicted_block[i][0]=(m5[0]+m5[1]);
predicted_block[i][2]=(m5[0]-m5[1]);
predicted_block[i][1]=m5[3]*2+m5[2];
predicted_block[i][3]=m5[3]-m5[2]*2;
}
for (j=0;j<BLOCK_SIZE;j++)
for (i=0;i<BLOCK_SIZE;i++)
{
// recovering coefficient since they are already dequantized earlier
img->cof[i0][j0][j][i]=(img->cof[i0][j0][j][i] >> qp_per) / dequant_coef[qp_rem][i][j];
if(img->sp_switch || img->type==SI_SLICE) //M.W. patched for SI
{
ilev=(iabs(predicted_block[i][j]) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp; //ES added
ilev= isignab(ilev,predicted_block[i][j])+ img->cof[i0][j0][j][i]; //ES added
img->cof[i0][j0][j][i] = isignab(iabs(ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp ,ilev) ; //ES added
} //ES added
else
{ //ES added
ilev=((img->cof[i0][j0][j][i]*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6)+predicted_block[i][j] ;
img->cof[i0][j0][j][i]=isignab((iabs(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp, ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp;
}
}
// horizontal
for (j=0;j<BLOCK_SIZE;j++)
{
for (i=0;i<BLOCK_SIZE;i++)
{
m5[i]=img->cof[i0][j0][j][i];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (i=0;i<2;i++)
{
i1=3-i;
img->m7[j][i]=m6[i]+m6[i1];
img->m7[j][i1]=m6[i]-m6[i1];
}
}
// vertical
for (i=0;i<BLOCK_SIZE;i++)
{
for (j=0;j<BLOCK_SIZE;j++)
m5[j]=img->m7[j][i];
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (j=0;j<2;j++)
{
j1=3-j;
img->m7[j][i] =iClip1(img->max_imgpel_value,rshift_rnd_sf((m6[j]+m6[j1]),DQ_BITS));
img->m7[j1][i]=iClip1(img->max_imgpel_value,rshift_rnd_sf((m6[j]-m6[j1]),DQ_BITS));
}
}
}
/*!
***********************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \par Input:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -