📄 18.htm
字号:
(4.48)
<P>其中:x<SUB>1</SUB>,x<SUB>2</SUB>,……,x<SUB>m</SUB>为输入精确量
<P>A<SUB>1i</SUB>(x<SUB>1</SUB>)为x<SUB>1</SUB>对A<SUB>1i</SUB>的隶属度,其余A<SUB>1i</SUB>(x<SUB>2</SUB>),……,A<SUB>mi</SUB>(x<SUB>m</SUB>)同理。
<P>所有的控制规则产生的总输出为y:
<TABLE height=148 cellSpacing=0 cellPadding=0 width="80%" align=center
border=0>
<TBODY>
<TR>
<TD width="73%" height=41><IMG height=39 src="18.files/7.2.ht1.gif"
width=128 border=0></TD>
<TD width="27%" height=41>(4.49)</TD></TR>
<TR>
<TD width="73%" height=22><FONT
size=2>模糊量A<SUB>ki</SUB>(x<SUB>k</SUB>)用钟形函数或高斯函数表示,故而有:</FONT></TD>
<TD width="27%" height=22></TD></TR>
<TR>
<TD width="73%" height=49><IMG height=47 src="18.files/7.2.ht2.gif"
width=307 border=0></TD>
<TD width="27%" height=49>(4.50)</TD></TR></TBODY></TABLE></P></TD></TR>
<TR>
<TD width="100%" height=18>
<P>或者 </P>
<P>A<SUB>ki</SUB>(x<SUB>k</SUB>)=exp(-{[(x<SUB>k</SUB>-a<SUB>ki</SUB>)/b<SUB>ki</SUB>]<SUP>2</SUP>}<SUP>cki</SUP>)
(4.51)</P>
<P>其中:a<SUB>ki</SUB>,b<SUB>ki</SUB>,c<SUB>ki</SUB>是函数的参数;改变这些参数则函效会产生相应的变化。故而模糊量的形状也产生变化。<BR>当系统是一个双输入单输出系统时,则模糊推理网络的结构如图4—11所示。</P>
<P>在这个网络中有两个输入,每个输入被划分成3个模糊量。对于输入x<SUB>1</SUB>,有L<SUB>1</SUB>(大),M<SUB>1</SUB>(中),s<SUB>1</SUB>(小)这3个隶属函数;对于输入x<SUB>2</SUB>,有I<SUB>2</SUB>(大),M<SUB>2</SUB>(中),S<SUB>2</SUB>(小)这3个隶属函数。故而有9条控制规则:</P>
<P>if x<SUB>1</SUB> is L<SUB>1</SUB> and x<SUB>2</SUB> is L<SUB>2</SUB>
then y<SUB>1</SUB>=f<SUB>1</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is L<SUB>1</SUB> and x<SUB>2</SUB> is M<SUB>2</SUB>
then y<SUB>2</SUB>=f<SUB>2</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is L<SUB>1</SUB> and x<SUB>2</SUB> is S<SUB>2</SUB>
then y<SUB>3</SUB>=f<SUB>3</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is M<SUB>1</SUB> and x<SUB>2</SUB> is L<SUB>2</SUB>
then y<SUB>4</SUB>=f<SUB>4</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is M<SUB>1</SUB> and x<SUB>2</SUB> is M<SUB>2</SUB>
then y<SUB>5</SUB>=f<SUB>5</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is M<SUB>1</SUB> and x<SUB>2</SUB> is S<SUB>2</SUB>
then y<SUB>6</SUB>=f<SUB>6</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is S<SUB>1</SUB> and x<SUB>2</SUB> is L<SUB>2</SUB>
then y<SUB>7</SUB>=f<SUB>7</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is S<SUB>1</SUB> and x<SUB>2</SUB> is M<SUB>2</SUB>
then y<SUB>8</SUB>=f<SUB>8</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>if x<SUB>1</SUB> is S<SUB>1</SUB> and x<SUB>2</SUB> is S<SUB>2</SUB>
then y<SUB>9</SUB>=f<SUB>9</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)</P>
<P>对应于图4—11中的模糊划分,则输入空间被划分成9个模糊子空间,如图4—12中所示。</P>
<P align=center><IMG height=362 src="18.files/7.2.ht3.gif" width=627
border=0></P>
<P align=center>图4-11 简化的模糊推理网络SFIN</P></TD></TR>
<TR>
<TD width="100%" height=534>
<P>图4—11所示的模糊推理网络表示的控制规则中,由于只有两个输入,故而有 </P>
<P>y<SUB>i</SUB>=f<SUB>i</SUB>(X)=f<SUB>i</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>),
i=1,2,......,9</P>
<P>即是:y<SUB>i</SUB>=p<SUB>0i</SUB>+p<SUB>1i</SUB>x<SUB>1</SUB>+p<SUB>2i</SUB>x<SUB>2</SUB>
(4.52)</P>
<P>如果对图4—11所示的网络进行优化,则相应对于控制规则的前件和后件进行优化。</P>
<P>当对控制规则进行前件优化时,也即对网络的第二层神经元进行优化,这时也即是对径向基函数的参数a<SUB>ki</SUB>,b<SUB>ki</SUB>,c<SUB>ki</SUB>进行优化;其中k是输入量下标号,即k=1,2,i是控制规则条数号,即i=1,2,…,9。从控制规则集中可知,有模物量:</P>
<P>A<SUB>11</SUB>=A<SUB>12</SUB>=A<SUB>13</SUB>=L<SUB>1</SUB>
A<SUB>21</SUB>=A<SUB>22</SUB>=A<SUB>23</SUB>=L<SUB>2</SUB></P>
<P>A<SUB>14</SUB>=A<SUB>15</SUB>=A<SUB>16</SUB>=M<SUB>1</SUB>
A<SUB>24</SUB>=A<SUB>25</SUB>=A<SUB>26</SUB>=M<SUB>2</SUB></P>
<P>A<SUB>17</SUB>=A<SUB>18</SUB>=A<SUB>19</SUB>=S<SUB>1</SUB>
A<SUB>27</SUB>=A<SUB>28</SUB>=A<SUB>29</SUB>=S<SUB>2</SUB></P>
<P>当对控制规则的后件进行优化时,也即是对f<SUB>i</SUB>(x<SUB>1</SUB>,x<SUB>2</SUB>)中的系数p<SUB>0i</SUB>,p<SUB>1i</SUB>,p<SUB>2i</SUB>进行优化。</P>
<P align=center><IMG height=406 src="18.files/7.2.ht4.gif" width=554
border=0></P>
<P align=center>图4-12 模糊子空间</P></TD></TR>
<TR>
<TD width="100%" height=147>
<P>2.神经模糊控制器的优化<BR>当在简化的模糊推理网络SFIN中的X<SUB>1</SUB>端输入偏差信号e(k)=y<SUB>d</SUB>(k)-y(k);其中y<SUB>d</SUB>(k)为给定信号,y(k)为对象实际输出信号。在x<SUB>2</SUB>端输入偏差变化率<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e(k)=e(k)-e(k-1)。而在SFIN输出端输出的是增量控制信号<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(k)=u(k)-u(k-1)。则SFIN可以看作一个参数化的模糊控制器。
</P>
<P>对SFIN考虑二个优化过程。一个是SFIN初始化的监视学习优化;另一个SFIN的在线自适应学习优化。</P>
<P>(1)SFIN的初始化监视学习</P>
<P>给出用于SFIN初始化的教师信号数据。</P>
<P>T{[e(i),<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e(i)]——<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(i)|i=1:N}
(4.53)</P>
<P>其中:e(i),<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e(i)是输入</P>
<P><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(i)是输出。</P>
<P>初始化教师数据来自系统控制人员的控制数据,优化时采用的目标函数为I<SUB>0</SUB>:</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="80%"><IMG height=42 src="18.files/7.2.ht5.gif" width=366
border=0></TD>
<TD width="20%">(4.54)</TD></TR>
<TR>
<TD width="80%"><FONT
size=2>其中:SFIN[e(i),Ae(i)]表示数据对e(i),Ae(I)输入SFIN之后得到的输出。<BR>用W表示SFIN中的普通参数,它可以用下式进行校正:</FONT></TD>
<TD width="20%"></TD></TR>
<TR>
<TD width="80%"><IMG height=42 src="18.files/7.2.ht6.gif" width=324
border=0></TD>
<TD width="20%">(4.55)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=325>
<P>其中:<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">η</SPAN>(k)是学习速率,1><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">η</SPAN>(k)>0。
</P>
<P>(i)前件参数估计</P>
<P>偏差e所取的模糊量个数表示为N<SUB>e</SUB>。i偏差变化率<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e所取的模糊量个数表示为N<SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e</SUB>。</P>
<P>根据先验知识,偏差e和偏差变化率<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e的边界分别是:</P>
<P>S<SUB>e</SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>e<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>B<SUB>e</SUB></P>
<P>S<SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e</SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤Δ</SPAN>e<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>B<SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e</SUB></P>
<P>则前件的初始参数可以选择如下</P>
<P><IMG height=23 src="18.files/7.2.ht7.gif" width=394 border=0></P>
<P><IMG height=22 src="18.files/7.2.ht8.gif" width=336 border=0></P>
<P><IMG height=20 src="18.files/7.2.ht9.gif" width=178 border=0></P>
<P>(ii)后件参数估计</P>
<P>从上可知,在SFIN中有控制规则为N<SUB>r</SUB>条:</P>
<P>N<SUB>r</SUB>=N<SUB>e</SUB>*N<SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e</SUB>
(4.56)</P>
<P>由于控制规则的后件为y<SUB>i</SUB>=f<SUB>i</SUB>(x)=p<SUB>0i</SUB>+p<SUB>1i</SUB>x<SUB>1</SUB>+p<SUB>2i</SUB>x<SUB>2</SUB>,也即有参数p<SUB>0i</SUB>,p<SUB>1i</SUB>,p<SUB>2i</SUB>。所以,总的后件参数为Ng;</P>
<P>Ng=3Nr
(4.57)</P>
<P>要求取Ng个参数,则要求有Ng个输入输出教师数据对:</P>
<P>{[e(q),<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>e(q)]——<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(q)},q=1:Ng
(4.58)</P>
<P>并通过这Ng个数据对才能形成Ng个方程的方程组.以求取后件的Ng个参数。</P>
<P>当在SFIN输入Ng对[e(q),e(q)],q=1:Ng数据时,则从式(4.49)有:</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="82%"><IMG height=48 src="18.files/7.2.ht10.gif" width=512
border=0></TD>
<TD width="18%">(4.59)</TD></TR>
<TR>
<TD width="82%"><FONT
size=2>在上面式(4.59)中,需要求f<SUB>i</SUB>中的参数p<SUB>0i</SUB>,p<SUB>1i</SUB>,p<SUB>2i</SUB>,则可写成</FONT></TD>
<TD width="18%"></TD></TR>
<TR>
<TD width="82%"><IMG height=50 src="18.files/7.2.ht11.gif" width=477
border=0></TD>
<TD width="18%">(4.60)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=62>
<P>用P表示后件f<SUB>i</SUB>的参数向量.M为Di的Ng*Ng短阵.U=[<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(1),<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(2),……,<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>u(Ng)]T,则式(4.60)可以写成如下矩阵形式:
</P>
<P>MP=U (4.61)</P>
<P>显然,解矩阵方程式(4.61),则有</P>
<P>P=M<SUP>-1</SUP>U</P>
<P>从而可得后件参数向量P,也即得出后件参数,p<SUB>0i</SUB>,p<SUB>1i</SUB>,p<SUB>2i</SUB>,i=1:9。</P>
<P>(2)SFIN的在线自适应学习优化</P>
<P>模糊推理网络SFIN是作为模糊控制器的,由它组成的模糊控制系统的框图如图4-13所示。</P>
<P align=center><IMG height=79 src="18.files/7.2.ht12.gif" width=488
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -