⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 11.htm

📁 介绍讲解人工智能神经网络——数字神经网络系统的教程
💻 HTM
📖 第 1 页 / 共 2 页
字号:
      <P><IMG height=42 src="11.files/5.3.ht18.gif" width=448 border=0></P>
      <P>从而可知</P>
      <P><IMG height=45 src="11.files/5.3.ht19.gif" width=323 border=0></P>
      <P>最后有</P>
      <P>[<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>W(k)]<SUP>2</SUP>-[<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>W(k-1)]<SUP>2</SUP>&lt;0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (2.68)</P>
      <P>式(2.68)说明引理的性质(1)成立。</P>
      <P>根据性质(1),则当k——<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>,则有w(k)=W<SUB>0</SUB>.故而在式(2.66)中两边都为0。这也就是必定有</P>
      <DIV align=center>
      <CENTER>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
        <TBODY>
        <TR>
          <TD width="50%"><IMG height=51 src="11.files/5.3.ht20.gif" width=288 
            border=0></TD>
          <TD width="50%">(2.69)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
  <TR>
    <TD width="100%" height=414>
      <P>可见,引理的性质(2)成立。 </P>
      <P>证毕。</P>
      <P>有了上面的引理,就可以给出由式(2.53)—(2.59)组成的控制结构对对象式(2.52)执行适应控制的闭环性质定理。</P>
      <P>定理:在对象由式(2.52)描述的控制中,式(2.53)—(2.59)构成的适应控制有如下的闭环性质:</P>
      <P>(1)输入信号u(t),输出信号y(t)都是有界的。</P>
      <P><IMG height=30 src="11.files/5.3.ht21.gif" width=230 border=0></P>
      <P>证明:</P>
      <P>设系统的跟踪误差用e'(k)表示</P>
      <P>e'(k)=y(k)-r(k)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (2.70)</P>
      <P>y(k)由式(2.61)给出。</P>
      <P>r(k)可由式(2.57),(2.58),(2.59)求出,先用W<SUB>n+1</SUB>(k)乘〔2.59)两边,则有</P>
      <P>W<SUB>n+1</SUB>(k-1)u(k-1)=r(k)+W<SUB>1</SUB>(k-1)(-X<SUB>1</SUB>(k-1))+.....,+W<SUB>n</SUB>(k-1)(-X<SUB>n</SUB>(k-1))+W<SUB>n+2</SUB>(k-1)(-X<SUB>n+2</SUB>(k-1))+......,Wn+m(k-1)(-Xn+m(k-1))</P>
      <P>整理后有</P>
      <P>r(k)=W<SUB>1</SUB>(k-1)X<SUB>1</SUB>(k-1)+......,+W<SUB>n</SUB>(k-1)X<SUB>n</SUB>(k-1)+W<SUB>n+1</SUB>(k-1)u(k-1)+W<SUB>n+2</SUB>(k-1)X<SUB>n+2</SUB>(k-1)+......,+W<SUB>n+m</SUB>(k-1)X<SUB>n+m</SUB>(k-1)</P>
      <P align=right>(2.71)&nbsp;&nbsp;&nbsp;&nbsp;</P>
      <P>由于 u(k-1)=Xn+1(k-1)</P>
      <P>故而有</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="71%"><IMG height=43 src="11.files/5.3.ht22.gif" width=288 
            border=0></TD>
          <TD width="29%">(2.72)</TD></TR>
        <TR>
          <TD width="71%"><FONT size=2>从式(2.61)和式(2.72),则有</FONT></TD>
          <TD width="29%"></TD></TR>
        <TR>
          <TD width="71%"><IMG height=111 src="11.files/5.3.ht23.gif" 
            width=448 border=0></TD>
          <TD width="29%">(2.73)</TD></TR>
        <TR>
          <TD width="71%"><FONT size=2>从引理的性质(2)有</FONT></TD>
          <TD width="29%"></TD></TR>
        <TR>
          <TD width="71%"><IMG height=52 src="11.files/5.3.ht25.gif" width=274 
            border=0></TD>
          <TD width="29%">(2.74)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=2>
      <P>只要证明x<SUP>T</SUP>(k-1)x(k-1)是有界的,就可以证明e(<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>)=0,也就可以证明定理中的性质(2)。 
      </P>
      <P>下面证明<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>x(k-1)<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>有限。</P>
      <P>从对象式(2.52)有关条件,对象的输入输出信号满足</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="71%"><IMG height=33 src="11.files/5.3.ht24.gif" width=288 
            border=0></TD>
          <TD width="29%">(2.75)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=39>
      <P>其中:1<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>i<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>k;m<SUB>1</SUB>&lt;<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>;m<SUB>2</SUB>&lt;<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞。</SPAN> 
      </P>
      <P>根据式(2.52)对象的满足条件,从式(2.53)则有</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="71%"><IMG height=36 src="11.files/5.3.ht26.gif" width=512 
            border=0></TD>
          <TD width="29%">(2.76)</TD></TR>
        <TR>
          <TD width="71%"><FONT size=2>既然,给定信号r是有界的,所以跟踪误差有</FONT></TD>
          <TD width="29%"></TD></TR>
        <TR>
          <TD width="71%"><IMG height=31 src="11.files/5.3.ht27.gif" width=364 
            border=0></TD>
          <TD width="29%">(2.77)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=6>
      <P>从而有|e'(k)|+m3<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≥</SPAN>|y(k)| 
      </P>
      <P>由此,式(2.76)可以写为:</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="86%"><IMG height=42 src="11.files/5.3.ht28.gif" width=701 
            border=0></TD>
          <TD width="14%">(2.78)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=70>
      <P>其中:0<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>C<SUB>1</SUB><SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN><SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>;0<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>C<SUB>2</SUB><SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN><SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>。 
      </P>
      <P>假设跟踪误差e'(k)有界,则从式(2.78)可知:<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>x(k)<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>同样有界;这样从式(2.74)可知</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="71%"><IMG height=35 src="11.files/5.3.ht30.gif" width=128 
            border=0></TD>
          <TD width="29%">(2.79)</TD></TR>
        <TR>
          <TD width="71%"><FONT size=2>显然,定理的性质(2)成立。 
            <BR>假设跟踪误差e'(k)无界,则存在时刻序列|kn|,令</FONT></TD>
          <TD width="29%"></TD></TR>
        <TR>
          <TD width="71%"><IMG height=42 src="11.files/5.3.ht29.gif" width=160 
            border=0></TD>
          <TD width="29%">(2.80)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%">
      <P>取m4=max(1,<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>) 
      </P>
      <P>考虑</P>
      <P><IMG height=57 src="11.files/5.3.ht31.gif" width=284 border=0></P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="70%"><IMG height=247 src="11.files/5.3.ht32.gif" 
            width=320 border=0></TD>
          <TD width="30%">(2.81)</TD></TR>
        <TR>
          <TD width="70%"><FONT size=2>对式(2.81)取极限有</FONT></TD>
          <TD width="30%"></TD></TR>
        <TR>
          <TD width="70%"><IMG height=159 src="11.files/5.3.ht33.gif" 
            width=464 border=0></TD>
          <TD width="30%">(2.82)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=1174>
      <P>这个极限存在说明e'(K)有界,假设其无界不成立。 </P>
      <P>由于e'(k)有界,故式(2.79)是必定成立的。由于e'(k)=y(k)-r(k),而r(k)有界,所以,y(k)有界。从式(2.75)可知u(k)也有界。则定理的两个性质成立。</P>
      <P>证毕。</P>
      <P>四、系统实际运行情况</P>
      <P>当对象的结构不同时,可以用于检验图2-16所示的神经适应控制系统的运行结果。对象仿真器PE,神经控制器NC分别由式(2.52)-(2.55)和式(2.57)-(2.59)所描述;学习时采用式(2.56)和式(2.58)。</P>
      <P>1.对有噪声的稳定对象的控制</P>
      <P>对象由下式表示</P>
      <P><IMG height=55 src="11.files/5.3.ht34.gif" width=366 border=0></P>
      <P>设对象仿真器PE和神经控制器NC输入的向量为6个元素,有n=m=3。在训练学习时PE的权系数向量更新取<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α</SPAN>和<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>的值如下: 

      <P><IMG height=52 src="11.files/5.3.ht35.gif" width=93 border=0> 
      <P>权系数向量的初始值取 
      <P>W(0)=[0,0,0,1,0,0]<SUP>T</SUP> 
      <P align=center><IMG height=342 src="11.files/5.3.ht36.gif" width=467 
      border=0> 
      <P align=center>图2-19 给定值r和对象输出y 
      <P align=center><IMG height=253 src="11.files/5.3.ht37.gif" width=461 
      border=0> 
      <P align=center>图2-20 NC产生的控制信号u 
      <P align=center><IMG height=237 src="11.files/5.3.ht38.gif" width=481 
      border=0> 
      <P align=center>图2-21 PE的学习过程W(k)的变化 </P></TD></TR>
  <TR>
    <TD width="100%" height=1319>
      <P>噪声是平均值为零的高斯白噪声。 </P>
      <P>给定输入r是幅值为1的方波;每方波周期采样80次。</P>
      <P>控制结果和情况如图2—19和图2—20所示。其中图2—19是对象输出和给定值的情况;图2—20是NC产生的控制信号u(k)。<BR>很明显,对象仿真器能正确地预测对象的动态过程。</P>
      <P>图2—21给出了对象仿真器PE的学习过程。</P>
      <P>2.对不稳定对象的控制</P>
      <P>不稳定对象由下式表示</P>
      <P><IMG height=54 src="11.files/5.3.ht39.gif" width=390 border=0></P>
      <P>在系统中,PE和NC的输入都采用6个元素的向量,故n=m=3。在训练学习时.PE权系数向量更新取<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α</SPAN>和<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>的值为</P>
      <P><IMG height=51 src="11.files/5.3.ht40.gif" width=94 border=0></P>
      <P>权系数向量初始化取值为</P>
      <P>W(0)=[0,0,0,1,0,0]<SUP>T</SUP></P>
      <P>给定输入r为幅度为1的方波,方波每周期采样80次。</P>
      <P>控制情况和结果以及邢学习时的w(k)变化情况分别如图2—22,图2—23,图2—24所示。对于不稳定对象,显然在过渡过程中有较大的超调;但在PE学习之后,对象输出能跟踪给定r。</P>
      <P align=center><IMG height=355 src="11.files/5.3.ht41.gif" width=480 
      border=0></P>
      <P align=center>图2-22 给定r和对象输出y的波形</P>
      <P align=center><IMG height=238 src="11.files/5.3.ht42.gif" width=457 
      border=0></P>
      <P align=center>图2-23 NC产生的控制信号U的波形</P>
      <P align=center><IMG height=324 src="11.files/5.3.ht43.gif" width=472 
      border=0></P>
      <P align=center>图2-24 PE学习时W(k)的变化情况 </P></TD></TR>
  <TR>
    <TD width="100%" height=17>
      <P align=right><A 
      href="http://www.jgchina.com/ednns/ednnsbk/5.2.htm">上一页</A>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      <A href="http://www.jgchina.com/ednns/ednnsbk/5.3.2.htm">下一页</A> 
  </P></TD></TR></TBODY></TABLE></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -