📄 cal_main.cpp
字号:
x[1] = cc.Ry; x[2] = cc.Rz; x[3] = cc.Tx; x[4] = cc.Ty; x[5] = cc.Tz; x[6] = cc.kappa1; x[7] = cc.f; /* define optional scale factors for the parameters */ if ( mode == 2 ) { for (i = 0; i < NPARAMS; i++) diag[i] = 1.0; /* some user-defined values */ } /* perform the optimization */ lmdif_ (cc_nic_optimization_error, &m, &n, x, fvec, &ftol, &xtol, >ol, &maxfev, &epsfcn, diag, &mode, &factor, &nprint, &info, &nfev, fjac, &ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4); /* update the calibration and camera constants */ cc.Rx = x[0]; cc.Ry = x[1]; cc.Rz = x[2]; apply_RPY_transform (); cc.Tx = x[3]; cc.Ty = x[4]; cc.Tz = x[5]; cc.kappa1 = x[6]; cc.f = x[7]; /* release allocated workspace */ free (fvec); free (fjac); free (wa4);#ifdef DEBUG /* print the number of function calls during iteration */ fprintf(stderr,"info: %d nfev: %d\n\n",info,nfev);#endif#undef NPARAMS}//全参数优化;/************************************************************************/void cc_full_optimization_error (long *m_ptr, long *n_ptr, double *params, double *err){ int i; double xc, yc, zc, Xd_, Yd_, Xu_1, Yu_1, Xu_2, Yu_2, distortion_factor, Rx, Ry, Rz, Tx, Ty, Tz, kappa1, f, Cx, Cy, r1, r2, r4, r5, r7, r8, sa, sb, sg, ca, cb, cg; Rx = params[0]; Ry = params[1]; Rz = params[2]; Tx = params[3]; Ty = params[4]; Tz = params[5]; kappa1 = params[6]; f = params[7]; Cx = params[8]; Cy = params[9]; SINCOS (Rx, sa, ca); SINCOS (Ry, sb, cb); SINCOS (Rz, sg, cg); r1 = cb * cg; r2 = cg * sa * sb - ca * sg; r4 = cb * sg; r5 = sa * sb * sg + ca * cg; r7 = -sb; r8 = cb * sa; for (i = 0; i < cd.point_count; i++) { /* convert from world coordinates to camera coordinates */ /* Note: zw is implicitly assumed to be zero for these (coplanar) calculations */ xc = r1 * cd.xw[i] + r2 * cd.yw[i] + Tx; yc = r4 * cd.xw[i] + r5 * cd.yw[i] + Ty; zc = r7 * cd.xw[i] + r8 * cd.yw[i] + Tz; /* convert from camera coordinates to undistorted sensor plane coordinates */ Xu_1 = f * xc / zc; Yu_1 = f * yc / zc; /* convert from 2D image coordinates to distorted sensor coordinates */ Xd_ = cp.dpx * (cd.Xf[i] - Cx) / cp.sx; Yd_ = cp.dpy * (cd.Yf[i] - Cy); /* convert from distorted sensor coordinates to undistorted sensor plane coordinates */ distortion_factor = 1 + kappa1 * (SQR (Xd_) + SQR (Yd_)); Xu_2 = Xd_ * distortion_factor; Yu_2 = Yd_ * distortion_factor; /* record the error in the undistorted sensor coordinates */ err[i] = hypot (Xu_1 - Xu_2, Yu_1 - Yu_2); }}void cc_full_optimization (){#define NPARAMS 10 int i; /* Parameters needed by MINPACK's lmdif() */ long m = cd.point_count; long n = NPARAMS; double x[NPARAMS]; double *fvec; double ftol = REL_SENSOR_TOLERANCE_ftol; double xtol = REL_PARAM_TOLERANCE_xtol; double gtol = ORTHO_TOLERANCE_gtol; long maxfev = MAXFEV; double epsfcn = EPSFCN; double diag[NPARAMS]; long mode = MODE; double factor = FACTOR; long nprint = 0; long info; long nfev; double *fjac; long ldfjac = m; long ipvt[NPARAMS]; double qtf[NPARAMS]; double wa1[NPARAMS]; double wa2[NPARAMS]; double wa3[NPARAMS]; double *wa4; /* allocate some workspace */ if (( fvec = (double *) calloc ((unsigned int) m, (unsigned int) sizeof(double))) == NULL ) { fprintf(stderr,"calloc: Cannot allocate workspace fvec\n"); exit(-1); } if (( fjac = (double *) calloc ((unsigned int) m*n, (unsigned int) sizeof(double))) == NULL ) { fprintf(stderr,"calloc: Cannot allocate workspace fjac\n"); exit(-1); } if (( wa4 = (double *) calloc ((unsigned int) m, (unsigned int) sizeof(double))) == NULL ) { fprintf(stderr,"calloc: Cannot allocate workspace wa4\n"); exit(-1); } /* use the current calibration and camera constants as a starting point */ x[0] = cc.Rx; x[1] = cc.Ry; x[2] = cc.Rz; x[3] = cc.Tx; x[4] = cc.Ty; x[5] = cc.Tz; x[6] = cc.kappa1; x[7] = cc.f; x[8] = cp.Cx; x[9] = cp.Cy; /* define optional scale factors for the parameters */ if ( mode == 2 ) { for (i = 0; i < NPARAMS; i++) diag[i] = 1.0; /* some user-defined values */ } /* perform the optimization */ lmdif_ (cc_full_optimization_error, &m, &n, x, fvec, &ftol, &xtol, >ol, &maxfev, &epsfcn, diag, &mode, &factor, &nprint, &info, &nfev, fjac, &ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4); /* update the calibration and camera constants */ cc.Rx = x[0]; cc.Ry = x[1]; cc.Rz = x[2]; apply_RPY_transform (); cc.Tx = x[3]; cc.Ty = x[4]; cc.Tz = x[5]; cc.kappa1 = x[6]; cc.f = x[7]; cp.Cx = x[8]; cp.Cy = x[9]; /* release allocated workspace */ free (fvec); free (fjac); free (wa4);#ifdef DEBUG /* print the number of function calls during iteration */ fprintf(stderr,"info: %d nfev: %d\n\n",info,nfev);#endif#undef NPARAMS}//以上为共面标定;以下为非共面标定;/***********************************************************************\* Routines for noncoplanar camera calibration *\***********************************************************************/void ncc_compute_Xd_Yd_and_r_squared (){ int i; double Xd_, Yd_; for (i = 0; i < cd.point_count; i++) { Xd[i] = Xd_ = cp.dpx * (cd.Xf[i] - cp.Cx) / cp.sx; /* [mm] */ Yd[i] = Yd_ = cp.dpy * (cd.Yf[i] - cp.Cy); /* [mm] */ r_squared[i] = SQR (Xd_) + SQR (Yd_); /* [mm^2] */ }}void ncc_compute_U (){ int i; dmat M, a, b; M = newdmat (0, (cd.point_count - 1), 0, 6, &errno); if (errno) { fprintf (stderr, "ncc compute U: unable to allocate matrix M\n"); exit (-1); } a = newdmat (0, 6, 0, 0, &errno); if (errno) { fprintf (stderr, "ncc compute U: unable to allocate vector a\n"); exit (-1); } b = newdmat (0, (cd.point_count - 1), 0, 0, &errno); if (errno) { fprintf (stderr, "ncc compute U: unable to allocate vector b\n"); exit (-1); } for (i = 0; i < cd.point_count; i++) { M.el[i][0] = Yd[i] * cd.xw[i]; M.el[i][1] = Yd[i] * cd.yw[i]; M.el[i][2] = Yd[i] * cd.zw[i]; M.el[i][3] = Yd[i]; M.el[i][4] = -Xd[i] * cd.xw[i]; M.el[i][5] = -Xd[i] * cd.yw[i]; M.el[i][6] = -Xd[i] * cd.zw[i]; b.el[i][0] = Xd[i]; } if (solve_system (M, a, b)) { fprintf (stderr, "ncc compute U: error - non-coplanar calibration tried with data which may possibly be coplanar\n\n"); exit (-1); } U[0] = a.el[0][0]; U[1] = a.el[1][0]; U[2] = a.el[2][0]; U[3] = a.el[3][0]; U[4] = a.el[4][0]; U[5] = a.el[5][0]; U[6] = a.el[6][0]; freemat (M); freemat (a); freemat (b);}void ncc_compute_Tx_and_Ty (){ int i, far_point; double Tx, Ty, Ty_squared, x, y, r1, r2, r3, r4, r5, r6, distance, far_distance; /* first find the square of the magnitude of Ty */ Ty_squared = 1 / (SQR (U[4]) + SQR (U[5]) + SQR (U[6])); /* find a point that is far from the image center */ far_distance = 0; far_point = 0; for (i = 0; i < cd.point_count; i++) if ((distance = r_squared[i]) > far_distance) { far_point = i; far_distance = distance; } /* now find the sign for Ty */ /* start by assuming Ty > 0 */ Ty = sqrt (Ty_squared); r1 = U[0] * Ty; r2 = U[1] * Ty; r3 = U[2] * Ty; Tx = U[3] * Ty; r4 = U[4] * Ty; r5 = U[5] * Ty; r6 = U[6] * Ty; x = r1 * cd.xw[far_point] + r2 * cd.yw[far_point] + r3 * cd.zw[far_point] + Tx; y = r4 * cd.xw[far_point] + r5 * cd.yw[far_point] + r6 * cd.zw[far_point] + Ty; /* flip Ty if we guessed wrong */ if ((SIGNBIT (x) != SIGNBIT (Xd[far_point])) || (SIGNBIT (y) != SIGNBIT (Yd[far_point]))) Ty = -Ty; /* update the calibration constants */ cc.Tx = U[3] * Ty; cc.Ty = Ty;}void ncc_compute_sx (){ cp.sx = sqrt (SQR (U[0]) + SQR (U[1]) + SQR (U[2])) * fabs (cc.Ty);}void ncc_compute_R (){ double r1, r2, r3, r4, r5, r6, r7, r8, r9; r1 = U[0] * cc.Ty / cp.sx; r2 = U[1] * cc.Ty / cp.sx; r3 = U[2] * cc.Ty / cp.sx; r4 = U[4] * cc.Ty; r5 = U[5] * cc.Ty; r6 = U[6] * cc.Ty; /* use the outer product of the first two rows to get the last row */ r7 = r2 * r6 - r3 * r5; r8 = r3 * r4 - r1 * r6; r9 = r1 * r5 - r2 * r4; /* update the calibration constants */ cc.r1 = r1; cc.r2 = r2; cc.r3 = r3; cc.r4 = r4; cc.r5 = r5; cc.r6 = r6; cc.r7 = r7; cc.r8 = r8; cc.r9 = r9; /* fill in cc.Rx, cc.Ry and cc.Rz */ solve_RPY_transform ();}void ncc_compute_better_R (){ double r1, r2, r3, r4, r5, r6, r7, sa, ca, sb, cb, sg, cg; r1 = U[0] * cc.Ty / cp.sx; r2 = U[1] * cc.Ty / cp.sx; r3 = U[2] * cc.Ty / cp.sx; r4 = U[4] * cc.Ty; r5 = U[5] * cc.Ty; r6 = U[6] * cc.Ty; /* use the outer product of the first two rows to get the last row */ r7 = r2 * r6 - r3 * r5; /* now find the RPY angles corresponding to the estimated rotation matrix */ cc.Rz = atan2 (r4, r1); SINCOS (cc.Rz, sg, cg); cc.Ry = atan2 (-r7, r1 * cg + r4 * sg); cc.Rx = atan2 (r3 * sg - r6 * cg, r5 * cg - r2 * sg); SINCOS (cc.Rx, sa, ca); SINCOS (cc.Ry, sb, cb); /* now generate a more orthonormal rotation matrix from the RPY angles */ cc.r1 = cb * cg; cc.r2 = cg * sa * sb - ca * sg; cc.r3 = sa * sg + ca * cg * sb; cc.r4 = cb * sg; cc.r5 = sa * sb * sg + ca * cg; cc.r6 = ca * sb * sg - cg * sa; cc.r7 = -sb; cc.r8 = cb * sa; cc.r9 = ca * cb;}void ncc_compute_approximate_f_and_Tz (){ int i; dmat M, a, b; M = newdmat (0, (cd.point_count - 1), 0, 1, &errno); if (errno) { fprintf (stderr, "ncc compute apx: unable to allocate matrix M\n"); exit (-1); } a = newdmat (0, 1, 0, 0, &errno); if (errno) { fprintf (stderr, "ncc compute apx: unable to allocate vector a\n"); exit (-1); } b = newdmat (0, (cd.point_count - 1), 0, 0, &errno); if (errno) { fprintf (stderr, "ncc compute apx: unable to allocate vector b\n"); exit (-1); } for (i = 0; i < cd.point_count; i++) { M.el[i][0] = cc.r4 * cd.xw[i] + cc.r5 * cd.yw[i] + cc.r6 * cd.zw[i] + cc.Ty; M.el[i][1] = -Yd[i]; b.el[i][0] = (cc.r7 * cd.xw[i] + cc.r8 * cd.yw[i] + cc.r9 * cd.zw[i]) * Yd[i]; } if (solve_system (M, a, b)) { fprintf (stderr, "ncc compute apx: unable to solve system Ma=b\n"); exit (-1); } /* update the calibration constants */ cc.f = a.el[0][0]; cc.Tz = a.el[1][0]; cc.kappa1 = 0.0; /* this is the assumption that our calculation was made under */ freemat (M); freemat (a); freemat (b);}/************************************************************************/void ncc_compute_exact_f_and_Tz_error (long *m_ptr, long *n_ptr, double *params, double *err){ int i; double xc, yc, zc, Xu_1, Yu_1, Xu_2, Yu_2, distortion_factor, f, Tz, kappa1; f = params[0]; Tz = params[1]; kappa1 = params[2]; for (i = 0; i < cd.point_count; i++) { /* convert from world coordinates to camera coordinates */ xc = cc.r1 * cd.xw[i] + cc.r2 * cd.yw[i] + cc.r3 * cd.zw[i] + cc.Tx; yc = cc.r4 * cd.xw[i] + cc.r5 * cd.yw[i] + cc.r6 * cd.zw[i] + cc.Ty; zc = cc.r7 * cd.xw[i] + cc.r8 * cd.yw[i] + cc.r9 * cd.zw[i] + Tz; /* convert from camera coordinates to undistorted sensor coordinates */ Xu_1 = f * xc / zc; Yu_1 = f * yc / zc; /* convert from distorted sensor coordinates to undistorted sensor coordinates */ distortion_factor = 1 + kappa1 * r_squared[i]; Xu_2 = Xd[i] * distortion_factor; Yu_2 = Yd[i] * distortion_factor; /* record the error in the undistorted sensor coordinates */ err[i] = hypot (Xu_1 - Xu_2, Yu_1 - Yu_2); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -