⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm_learn.c

📁 SVM-light Version llf_dqy_hhu
💻 C
📖 第 1 页 / 共 5 页
字号:
  last_suboptimal_at = (long *)my_malloc(sizeof(long)*totdoc);  key = (long *)my_malloc(sizeof(long)*(totdoc+11));   selcrit = (double *)my_malloc(sizeof(double)*totdoc);  selexam = (long *)my_malloc(sizeof(long)*totdoc);  a_old = (double *)my_malloc(sizeof(double)*totdoc);  aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);  working2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));  active2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));  qp.opt_ce = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);  qp.opt_ce0 = (double *)my_malloc(sizeof(double));  qp.opt_g = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize				 *learn_parm->svm_maxqpsize);  qp.opt_g0 = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);  qp.opt_xinit = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);  qp.opt_low=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);  qp.opt_up=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);  weights=(double *)my_malloc(sizeof(double)*(totwords+1));  choosenum=0;  inconsistentnum=0;  transductcycle=0;  transduction=0;  if(!retrain) retrain=1;  iteration=1;  if(kernel_cache) {    kernel_cache->time=iteration;  // for lru cache //    kernel_cache_reset_lru(kernel_cache);  }  for(i=0;i<totdoc;i++) {    // various inits //    chosen[i]=0;    a_old[i]=a[i];    last_suboptimal_at[i]=1;    if(inconsistent[i])       inconsistentnum++;    if(unlabeled[i]) {      transduction=1;    }  }  activenum=compute_index(shrink_state->active,totdoc,active2dnum);  inactivenum=totdoc-activenum;  clear_index(working2dnum);                            // repeat this loop until we have convergence //  for(;retrain;iteration++) {    if(kernel_cache)      kernel_cache->time=iteration;  // for lru cache //    if(verbosity>=2) {      printf(	"Iteration %ld: ",iteration); fflush(stdout);    }    else if(verbosity==1) {      printf("."); fflush(stdout);    }    if(verbosity>=2) t0=get_runtime();    if(verbosity>=3) {      printf("\nSelecting working set... "); fflush(stdout);     }    if(learn_parm->svm_newvarsinqp>learn_parm->svm_maxqpsize)       learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;    i=0;    for(jj=0;(j=working2dnum[jj])>=0;jj++) { // clear working set //      if((chosen[j]>=(learn_parm->svm_maxqpsize/		      minl(learn_parm->svm_maxqpsize,			   learn_parm->svm_newvarsinqp))) 	 || (inconsistent[j])	 || (j == heldout)) {	chosen[j]=0; 	choosenum--;       }      else {	chosen[j]++;	working2dnum[i++]=j;      }    }    working2dnum[i]=-1;    if(retrain == 2) {      choosenum=0;      for(jj=0;(j=working2dnum[jj])>=0;jj++) { // fully clear working set //	chosen[j]=0;       }      clear_index(working2dnum);      for(i=0;i<totdoc;i++) { // set inconsistent examples to zero (-i 1) //	if((inconsistent[i] || (heldout==i)) && (a[i] != 0.0)) {	  chosen[i]=99999;	  choosenum++;	  a[i]=0;	}      }      if(learn_parm->biased_hyperplane) {	eq=0;	for(i=0;i<totdoc;i++) { // make sure we fulfill equality constraint //	  eq+=a[i]*label[i];	}	for(i=0;(i<totdoc) && (fabs(eq) > learn_parm->epsilon_a);i++) {	  if((eq*label[i] > 0) && (a[i] > 0)) {	    chosen[i]=88888;	    choosenum++;	    if((eq*label[i]) > a[i]) {	      eq-=(a[i]*label[i]);	      a[i]=0;	    }	    else {	      a[i]-=(eq*label[i]);	      eq=0;	    }	  }	}      }      compute_index(chosen,totdoc,working2dnum);    }    else {      // select working set according to steepest gradient //      if(iteration % 101) {        already_chosen=0;	if((minl(learn_parm->svm_newvarsinqp,		 learn_parm->svm_maxqpsize-choosenum)>=4) 	   && (kernel_parm->kernel_type != LINEAR)) {	  // select part of the working set from cache //	  already_chosen=select_next_qp_subproblem_grad_cache(			      label,unlabeled,a,lin,c,totdoc,			      (long)(minl(learn_parm->svm_maxqpsize-choosenum,					  learn_parm->svm_newvarsinqp)				     /2),			      learn_parm,inconsistent,active2dnum,			      working2dnum,selcrit,selexam,kernel_cache,			      key,chosen);	  choosenum+=already_chosen;	}	choosenum+=select_next_qp_subproblem_grad(                              label,unlabeled,a,lin,c,totdoc,                              minl(learn_parm->svm_maxqpsize-choosenum,				   learn_parm->svm_newvarsinqp-already_chosen),                              learn_parm,inconsistent,active2dnum,			      working2dnum,selcrit,selexam,kernel_cache,key,			      chosen);      }      else { // once in a while, select a somewhat random working set//		//to get unlocked of infinite loops due to numerical//		//inaccuracies in the core qp-solver //	choosenum+=select_next_qp_subproblem_rand(                              label,unlabeled,a,lin,c,totdoc,                              minl(learn_parm->svm_maxqpsize-choosenum,				   learn_parm->svm_newvarsinqp),                              learn_parm,inconsistent,active2dnum,			      working2dnum,selcrit,selexam,kernel_cache,key,			      chosen,iteration);      }    }    if(verbosity>=2) {      printf(" %ld vectors chosen\n",choosenum); fflush(stdout);     }    if(verbosity>=2) t1=get_runtime();    if(kernel_cache)       cache_multiple_kernel_rows(kernel_cache,docs,working2dnum,				 choosenum,kernel_parm);         if(verbosity>=2) t2=get_runtime();    if(retrain != 2) {      optimize_svm(docs,label,unlabeled,chosen,active2dnum,model,totdoc,		   working2dnum,choosenum,a,lin,c,learn_parm,aicache,		   kernel_parm,&qp,&epsilon_crit_org);    }    if(verbosity>=2) t3=get_runtime();    update_linear_component(docs,label,active2dnum,a,a_old,working2dnum,totdoc,			    totwords,kernel_parm,kernel_cache,lin,aicache,			    weights);    if(verbosity>=2) t4=get_runtime();    supvecnum=calculate_svm_model(docs,label,unlabeled,lin,a,a_old,c,		                  learn_parm,working2dnum,active2dnum,model);    if(verbosity>=2) t5=get_runtime();    // The following computation of the objective function works only //    // relative to the active variables //    if(verbosity>=3) {      criterion=compute_objective_function(a,lin,c,learn_parm->eps,label,		                           active2dnum);      printf("Objective function (over active variables): %.16f\n",criterion);      fflush(stdout);     }    for(jj=0;(i=working2dnum[jj])>=0;jj++) {      a_old[i]=a[i];    }    if(retrain == 2) {  // reset inconsistent unlabeled examples //      for(i=0;(i<totdoc);i++) {	if(inconsistent[i] && unlabeled[i]) {	  inconsistent[i]=0;	  label[i]=0;	}      }    }    retrain=check_optimality(model,label,unlabeled,a,lin,c,totdoc,learn_parm,			     maxdiff,epsilon_crit_org,&misclassified,			     inconsistent,active2dnum,last_suboptimal_at,			     iteration,kernel_parm);    if(verbosity>=2) {      t6=get_runtime();      timing_profile->time_select+=t1-t0;      timing_profile->time_kernel+=t2-t1;      timing_profile->time_opti+=t3-t2;      timing_profile->time_update+=t4-t3;      timing_profile->time_model+=t5-t4;      timing_profile->time_check+=t6-t5;    }    noshrink=0;    if((!retrain) && (inactivenum>0)        && ((!learn_parm->skip_final_opt_check) 	   || (kernel_parm->kernel_type == LINEAR))) {       if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) 	 || (verbosity>=2)) {	if(verbosity==1) {	  printf("\n");	}	printf(" Checking optimality of inactive variables..."); 	fflush(stdout);      }      t1=get_runtime();      reactivate_inactive_examples(label,unlabeled,a,shrink_state,lin,c,totdoc,				   totwords,iteration,learn_parm,inconsistent,				   docs,kernel_parm,kernel_cache,model,aicache,				   weights,maxdiff);      // Update to new active variables. //      activenum=compute_index(shrink_state->active,totdoc,active2dnum);      inactivenum=totdoc-activenum;      // termination criterion //      noshrink=1;      retrain=0;      if((*maxdiff) > learn_parm->epsilon_crit) 	retrain=1;      timing_profile->time_shrink+=get_runtime()-t1;      if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) 	 || (verbosity>=2)) {	printf("done.\n");  fflush(stdout);        printf(" Number of inactive variables = %ld\n",inactivenum);      }		      }    if((!retrain) && (learn_parm->epsilon_crit>(*maxdiff)))       learn_parm->epsilon_crit=(*maxdiff);    if((!retrain) && (learn_parm->epsilon_crit>epsilon_crit_org)) {      learn_parm->epsilon_crit/=2.0;      retrain=1;      noshrink=1;    }    if(learn_parm->epsilon_crit<epsilon_crit_org)       learn_parm->epsilon_crit=epsilon_crit_org;        if(verbosity>=2) {      printf(" => (%ld SV (incl. %ld SV at u-bound), max violation=%.5f)\n",	     supvecnum,model->at_upper_bound,(*maxdiff));       fflush(stdout);    }    if(verbosity>=3) {      printf("\n");    }    if((!retrain) && (transduction)) {      for(i=0;(i<totdoc);i++) {	shrink_state->active[i]=1;      }      activenum=compute_index(shrink_state->active,totdoc,active2dnum);      inactivenum=0;      if(verbosity==1) printf("done\n");      retrain=incorporate_unlabeled_examples(model,label,inconsistent,					     unlabeled,a,lin,totdoc,					     selcrit,selexam,key,					     transductcycle,kernel_parm,					     learn_parm);      epsilon_crit_org=learn_parm->epsilon_crit;      if(kernel_parm->kernel_type == LINEAR)	learn_parm->epsilon_crit=1;       transductcycle++;    }     else if(((iteration % 10) == 0) && (!noshrink)) {      activenum=shrink_problem(learn_parm,shrink_state,kernel_parm,active2dnum,			       last_suboptimal_at,iteration,totdoc,			       maxl((long)(activenum/10),				    maxl((long)(totdoc/500),100)),			       a,inconsistent);      inactivenum=totdoc-activenum;      if((kernel_cache)	 && (supvecnum>kernel_cache->max_elems)	 && ((kernel_cache->activenum-activenum)>maxl((long)(activenum/10),500))) {	kernel_cache_shrink(kernel_cache,totdoc,			    minl((kernel_cache->activenum-activenum),				 (kernel_cache->activenum-supvecnum)),			    shrink_state->active);       }    }    if((!retrain) && learn_parm->remove_inconsistent) {      if(verbosity>=1) {	printf(" Moving training errors to inconsistent examples...");	fflush(stdout);      }      if(learn_parm->remove_inconsistent == 1) {	retrain=identify_inconsistent(a,label,unlabeled,totdoc,learn_parm,				      &inconsistentnum,inconsistent);       }      else if(learn_parm->remove_inconsistent == 2) {	retrain=identify_misclassified(lin,label,unlabeled,totdoc,				       model,&inconsistentnum,inconsistent);       }      else if(learn_parm->remove_inconsistent == 3) {	retrain=identify_one_misclassified(lin,label,unlabeled,totdoc,				   model,&inconsistentnum,inconsistent);      }      if(retrain) {	if(kernel_parm->kernel_type == LINEAR) { // reinit shrinking //	  learn_parm->epsilon_crit=2.0;	}       }      if(verbosity>=1) {	printf("done.\n");	if(retrain) {	  printf(" Now %ld inconsistent examples.\n",inconsistentnum);	}      }    }  } // end of loop //  free(chosen);  free(last_suboptimal_at);  free(key);  free(selcrit);  free(selexam);  free(a_old);  free(aicache);  free(working2dnum);  free(active2dnum);  free(qp.opt_ce);  free(qp.opt_ce0);  free(qp.opt_g);  free(qp.opt_g0);  free(qp.opt_xinit);  free(qp.opt_low);  free(qp.opt_up);  free(weights);  learn_parm->epsilon_crit=epsilon_crit_org; /* restore org */  return(iteration);}double compute_objective_function(double *a, double *lin, double *c, 				  double eps, long int *label, 				  long int *active2dnum)     /* Return value of objective function. */     /* Works only relative to the active variables! */{  long i,ii;  double criterion;  /* calculate value of objective function */  criterion=0;  for(ii=0;active2dnum[ii]>=0;ii++) {    i=active2dnum[ii];    criterion=criterion+(eps-(double)label[i]*c[i])*a[i]+0.5*a[i]*label[i]*lin[i];  }   return(criterion);}void clear_index(long int *index)              /* initializes and empties index */{  index[0]=-1;} void add_to_index(long int *index, long int elem)     /* initializes and empties index */{  register long i;  for(i=0;index[i] != -1;i++);  index[i]=elem;  index[i+1]=-1;}long compute_index(long int *binfeature, long int range, long int *index)     /* create an inverted index of binfeature */{                 register long i,ii;  ii=0;  for(i=0;i<range;i++) {    if(binfeature[i]) {      index[ii]=i;      ii++;    }  }  for(i=0;i<4;i++) {    index[ii+i]=-1;  }  return(ii);}void optimize_svm(DOC *docs, long int *label, long int *unlabeled, 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -