📄 svm_learn.c
字号:
last_suboptimal_at = (long *)my_malloc(sizeof(long)*totdoc); key = (long *)my_malloc(sizeof(long)*(totdoc+11)); selcrit = (double *)my_malloc(sizeof(double)*totdoc); selexam = (long *)my_malloc(sizeof(long)*totdoc); a_old = (double *)my_malloc(sizeof(double)*totdoc); aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc); working2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11)); active2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11)); qp.opt_ce = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize); qp.opt_ce0 = (double *)my_malloc(sizeof(double)); qp.opt_g = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize *learn_parm->svm_maxqpsize); qp.opt_g0 = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize); qp.opt_xinit = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize); qp.opt_low=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize); qp.opt_up=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize); weights=(double *)my_malloc(sizeof(double)*(totwords+1)); choosenum=0; inconsistentnum=0; transductcycle=0; transduction=0; if(!retrain) retrain=1; iteration=1; if(kernel_cache) { kernel_cache->time=iteration; // for lru cache // kernel_cache_reset_lru(kernel_cache); } for(i=0;i<totdoc;i++) { // various inits // chosen[i]=0; a_old[i]=a[i]; last_suboptimal_at[i]=1; if(inconsistent[i]) inconsistentnum++; if(unlabeled[i]) { transduction=1; } } activenum=compute_index(shrink_state->active,totdoc,active2dnum); inactivenum=totdoc-activenum; clear_index(working2dnum); // repeat this loop until we have convergence // for(;retrain;iteration++) { if(kernel_cache) kernel_cache->time=iteration; // for lru cache // if(verbosity>=2) { printf( "Iteration %ld: ",iteration); fflush(stdout); } else if(verbosity==1) { printf("."); fflush(stdout); } if(verbosity>=2) t0=get_runtime(); if(verbosity>=3) { printf("\nSelecting working set... "); fflush(stdout); } if(learn_parm->svm_newvarsinqp>learn_parm->svm_maxqpsize) learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize; i=0; for(jj=0;(j=working2dnum[jj])>=0;jj++) { // clear working set // if((chosen[j]>=(learn_parm->svm_maxqpsize/ minl(learn_parm->svm_maxqpsize, learn_parm->svm_newvarsinqp))) || (inconsistent[j]) || (j == heldout)) { chosen[j]=0; choosenum--; } else { chosen[j]++; working2dnum[i++]=j; } } working2dnum[i]=-1; if(retrain == 2) { choosenum=0; for(jj=0;(j=working2dnum[jj])>=0;jj++) { // fully clear working set // chosen[j]=0; } clear_index(working2dnum); for(i=0;i<totdoc;i++) { // set inconsistent examples to zero (-i 1) // if((inconsistent[i] || (heldout==i)) && (a[i] != 0.0)) { chosen[i]=99999; choosenum++; a[i]=0; } } if(learn_parm->biased_hyperplane) { eq=0; for(i=0;i<totdoc;i++) { // make sure we fulfill equality constraint // eq+=a[i]*label[i]; } for(i=0;(i<totdoc) && (fabs(eq) > learn_parm->epsilon_a);i++) { if((eq*label[i] > 0) && (a[i] > 0)) { chosen[i]=88888; choosenum++; if((eq*label[i]) > a[i]) { eq-=(a[i]*label[i]); a[i]=0; } else { a[i]-=(eq*label[i]); eq=0; } } } } compute_index(chosen,totdoc,working2dnum); } else { // select working set according to steepest gradient // if(iteration % 101) { already_chosen=0; if((minl(learn_parm->svm_newvarsinqp, learn_parm->svm_maxqpsize-choosenum)>=4) && (kernel_parm->kernel_type != LINEAR)) { // select part of the working set from cache // already_chosen=select_next_qp_subproblem_grad_cache( label,unlabeled,a,lin,c,totdoc, (long)(minl(learn_parm->svm_maxqpsize-choosenum, learn_parm->svm_newvarsinqp) /2), learn_parm,inconsistent,active2dnum, working2dnum,selcrit,selexam,kernel_cache, key,chosen); choosenum+=already_chosen; } choosenum+=select_next_qp_subproblem_grad( label,unlabeled,a,lin,c,totdoc, minl(learn_parm->svm_maxqpsize-choosenum, learn_parm->svm_newvarsinqp-already_chosen), learn_parm,inconsistent,active2dnum, working2dnum,selcrit,selexam,kernel_cache,key, chosen); } else { // once in a while, select a somewhat random working set// //to get unlocked of infinite loops due to numerical// //inaccuracies in the core qp-solver // choosenum+=select_next_qp_subproblem_rand( label,unlabeled,a,lin,c,totdoc, minl(learn_parm->svm_maxqpsize-choosenum, learn_parm->svm_newvarsinqp), learn_parm,inconsistent,active2dnum, working2dnum,selcrit,selexam,kernel_cache,key, chosen,iteration); } } if(verbosity>=2) { printf(" %ld vectors chosen\n",choosenum); fflush(stdout); } if(verbosity>=2) t1=get_runtime(); if(kernel_cache) cache_multiple_kernel_rows(kernel_cache,docs,working2dnum, choosenum,kernel_parm); if(verbosity>=2) t2=get_runtime(); if(retrain != 2) { optimize_svm(docs,label,unlabeled,chosen,active2dnum,model,totdoc, working2dnum,choosenum,a,lin,c,learn_parm,aicache, kernel_parm,&qp,&epsilon_crit_org); } if(verbosity>=2) t3=get_runtime(); update_linear_component(docs,label,active2dnum,a,a_old,working2dnum,totdoc, totwords,kernel_parm,kernel_cache,lin,aicache, weights); if(verbosity>=2) t4=get_runtime(); supvecnum=calculate_svm_model(docs,label,unlabeled,lin,a,a_old,c, learn_parm,working2dnum,active2dnum,model); if(verbosity>=2) t5=get_runtime(); // The following computation of the objective function works only // // relative to the active variables // if(verbosity>=3) { criterion=compute_objective_function(a,lin,c,learn_parm->eps,label, active2dnum); printf("Objective function (over active variables): %.16f\n",criterion); fflush(stdout); } for(jj=0;(i=working2dnum[jj])>=0;jj++) { a_old[i]=a[i]; } if(retrain == 2) { // reset inconsistent unlabeled examples // for(i=0;(i<totdoc);i++) { if(inconsistent[i] && unlabeled[i]) { inconsistent[i]=0; label[i]=0; } } } retrain=check_optimality(model,label,unlabeled,a,lin,c,totdoc,learn_parm, maxdiff,epsilon_crit_org,&misclassified, inconsistent,active2dnum,last_suboptimal_at, iteration,kernel_parm); if(verbosity>=2) { t6=get_runtime(); timing_profile->time_select+=t1-t0; timing_profile->time_kernel+=t2-t1; timing_profile->time_opti+=t3-t2; timing_profile->time_update+=t4-t3; timing_profile->time_model+=t5-t4; timing_profile->time_check+=t6-t5; } noshrink=0; if((!retrain) && (inactivenum>0) && ((!learn_parm->skip_final_opt_check) || (kernel_parm->kernel_type == LINEAR))) { if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) || (verbosity>=2)) { if(verbosity==1) { printf("\n"); } printf(" Checking optimality of inactive variables..."); fflush(stdout); } t1=get_runtime(); reactivate_inactive_examples(label,unlabeled,a,shrink_state,lin,c,totdoc, totwords,iteration,learn_parm,inconsistent, docs,kernel_parm,kernel_cache,model,aicache, weights,maxdiff); // Update to new active variables. // activenum=compute_index(shrink_state->active,totdoc,active2dnum); inactivenum=totdoc-activenum; // termination criterion // noshrink=1; retrain=0; if((*maxdiff) > learn_parm->epsilon_crit) retrain=1; timing_profile->time_shrink+=get_runtime()-t1; if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) || (verbosity>=2)) { printf("done.\n"); fflush(stdout); printf(" Number of inactive variables = %ld\n",inactivenum); } } if((!retrain) && (learn_parm->epsilon_crit>(*maxdiff))) learn_parm->epsilon_crit=(*maxdiff); if((!retrain) && (learn_parm->epsilon_crit>epsilon_crit_org)) { learn_parm->epsilon_crit/=2.0; retrain=1; noshrink=1; } if(learn_parm->epsilon_crit<epsilon_crit_org) learn_parm->epsilon_crit=epsilon_crit_org; if(verbosity>=2) { printf(" => (%ld SV (incl. %ld SV at u-bound), max violation=%.5f)\n", supvecnum,model->at_upper_bound,(*maxdiff)); fflush(stdout); } if(verbosity>=3) { printf("\n"); } if((!retrain) && (transduction)) { for(i=0;(i<totdoc);i++) { shrink_state->active[i]=1; } activenum=compute_index(shrink_state->active,totdoc,active2dnum); inactivenum=0; if(verbosity==1) printf("done\n"); retrain=incorporate_unlabeled_examples(model,label,inconsistent, unlabeled,a,lin,totdoc, selcrit,selexam,key, transductcycle,kernel_parm, learn_parm); epsilon_crit_org=learn_parm->epsilon_crit; if(kernel_parm->kernel_type == LINEAR) learn_parm->epsilon_crit=1; transductcycle++; } else if(((iteration % 10) == 0) && (!noshrink)) { activenum=shrink_problem(learn_parm,shrink_state,kernel_parm,active2dnum, last_suboptimal_at,iteration,totdoc, maxl((long)(activenum/10), maxl((long)(totdoc/500),100)), a,inconsistent); inactivenum=totdoc-activenum; if((kernel_cache) && (supvecnum>kernel_cache->max_elems) && ((kernel_cache->activenum-activenum)>maxl((long)(activenum/10),500))) { kernel_cache_shrink(kernel_cache,totdoc, minl((kernel_cache->activenum-activenum), (kernel_cache->activenum-supvecnum)), shrink_state->active); } } if((!retrain) && learn_parm->remove_inconsistent) { if(verbosity>=1) { printf(" Moving training errors to inconsistent examples..."); fflush(stdout); } if(learn_parm->remove_inconsistent == 1) { retrain=identify_inconsistent(a,label,unlabeled,totdoc,learn_parm, &inconsistentnum,inconsistent); } else if(learn_parm->remove_inconsistent == 2) { retrain=identify_misclassified(lin,label,unlabeled,totdoc, model,&inconsistentnum,inconsistent); } else if(learn_parm->remove_inconsistent == 3) { retrain=identify_one_misclassified(lin,label,unlabeled,totdoc, model,&inconsistentnum,inconsistent); } if(retrain) { if(kernel_parm->kernel_type == LINEAR) { // reinit shrinking // learn_parm->epsilon_crit=2.0; } } if(verbosity>=1) { printf("done.\n"); if(retrain) { printf(" Now %ld inconsistent examples.\n",inconsistentnum); } } } } // end of loop // free(chosen); free(last_suboptimal_at); free(key); free(selcrit); free(selexam); free(a_old); free(aicache); free(working2dnum); free(active2dnum); free(qp.opt_ce); free(qp.opt_ce0); free(qp.opt_g); free(qp.opt_g0); free(qp.opt_xinit); free(qp.opt_low); free(qp.opt_up); free(weights); learn_parm->epsilon_crit=epsilon_crit_org; /* restore org */ return(iteration);}double compute_objective_function(double *a, double *lin, double *c, double eps, long int *label, long int *active2dnum) /* Return value of objective function. */ /* Works only relative to the active variables! */{ long i,ii; double criterion; /* calculate value of objective function */ criterion=0; for(ii=0;active2dnum[ii]>=0;ii++) { i=active2dnum[ii]; criterion=criterion+(eps-(double)label[i]*c[i])*a[i]+0.5*a[i]*label[i]*lin[i]; } return(criterion);}void clear_index(long int *index) /* initializes and empties index */{ index[0]=-1;} void add_to_index(long int *index, long int elem) /* initializes and empties index */{ register long i; for(i=0;index[i] != -1;i++); index[i]=elem; index[i+1]=-1;}long compute_index(long int *binfeature, long int range, long int *index) /* create an inverted index of binfeature */{ register long i,ii; ii=0; for(i=0;i<range;i++) { if(binfeature[i]) { index[ii]=i; ii++; } } for(i=0;i<4;i++) { index[ii+i]=-1; } return(ii);}void optimize_svm(DOC *docs, long int *label, long int *unlabeled,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -