📄 svm_learn.c
字号:
/* Learns an SVM regression model based on the training data in docs/label. The resulting model is returned in the structure model. */void svm_learn_regression(DOC *docs, double *value, long int totdoc, long int totwords, LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm, KERNEL_CACHE *kernel_cache, MODEL *model) /* docs: Training vectors (x-part) */ /* class: Training value (y-part) */ /* totdoc: Number of examples in docs/label */ /* totwords: Number of features (i.e. highest feature index) */ /* learn_parm: Learning paramenters */ /* kernel_parm: Kernel paramenters */ /* kernel_cache:Initialized Cache of size 2*totdoc */ /* model: Returns learning result (assumed empty before called) */{ long *inconsistent,i,j; long inconsistentnum; long upsupvecnum; double loss,model_length,example_length; double maxdiff,*lin,*a,*c; long runtime_start,runtime_end; long iterations; long *unlabeled; double r_delta_sq=0,r_delta,r_delta_avg; double *xi_fullset; /* buffer for storing xi on full sample in loo */ double *a_fullset; /* buffer for storing alpha on full sample in loo */ TIMING timing_profile; SHRINK_STATE shrink_state; DOC *docs_org; long *label; /* set up regression problem in standard form */ docs_org=docs; docs = (DOC *)my_malloc(sizeof(DOC)*2*totdoc); label = (long *)my_malloc(sizeof(long)*2*totdoc); c = (double *)my_malloc(sizeof(double)*2*totdoc); for(i=0;i<totdoc;i++) { j=2*totdoc-1-i; docs[i]=docs_org[i]; docs[i].docnum=i; label[i]=+1; c[i]=value[i]; docs[j]=docs_org[i]; docs[j].docnum=j; label[j]=-1; c[j]=value[i]; } totdoc*=2; runtime_start=get_runtime(); timing_profile.time_kernel=0; timing_profile.time_opti=0; timing_profile.time_shrink=0; timing_profile.time_update=0; timing_profile.time_model=0; timing_profile.time_check=0; timing_profile.time_select=0; kernel_cache_statistic=0; learn_parm->totwords=totwords; /* make sure -n value is reasonable */ if((learn_parm->svm_newvarsinqp < 2) || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) { learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize; } init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK); inconsistent = (long *)my_malloc(sizeof(long)*totdoc); unlabeled = (long *)my_malloc(sizeof(long)*totdoc); a = (double *)my_malloc(sizeof(double)*totdoc); a_fullset = (double *)my_malloc(sizeof(double)*totdoc); xi_fullset = (double *)my_malloc(sizeof(double)*totdoc); lin = (double *)my_malloc(sizeof(double)*totdoc); learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc); model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2)); model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2)); model->index = (long *)my_malloc(sizeof(long)*(totdoc+2)); model->at_upper_bound=0; model->b=0; model->supvec[0]=0; /* element 0 reserved and empty for now */ model->alpha[0]=0; model->lin_weights=NULL; model->totwords=totwords; model->totdoc=totdoc; model->kernel_parm=(*kernel_parm); model->sv_num=1; model->loo_error=-1; model->loo_recall=-1; model->loo_precision=-1; model->xa_error=-1; model->xa_recall=-1; model->xa_precision=-1; inconsistentnum=0; r_delta=estimate_r_delta(docs,totdoc,kernel_parm); r_delta_sq=r_delta*r_delta; r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm); if(learn_parm->svm_c == 0.0) { /* default value for C */ learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg); if(verbosity>=1) printf("Setting default regularization parameter C=%.4f\n", learn_parm->svm_c); } for(i=0;i<totdoc;i++) { /* various inits */ inconsistent[i]=0; a[i]=0; lin[i]=0; unlabeled[i]=0; if(label[i] > 0) { learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio* docs[i].costfactor; } else if(label[i] < 0) { learn_parm->svm_cost[i]=learn_parm->svm_c*docs[i].costfactor; } } /* caching makes no sense for linear kernel */ if(kernel_parm->kernel_type == LINEAR) { kernel_cache = NULL; } if(verbosity==1) { printf("Optimizing"); fflush(stdout); } /* train the svm */ iterations=optimize_to_convergence(docs,label,totdoc,totwords,learn_parm, kernel_parm,kernel_cache,&shrink_state,model, inconsistent,unlabeled,a,lin,c,&timing_profile, &maxdiff,(long)-1, (long)1); if(verbosity>=1) { if(verbosity==1) printf("done. (%ld iterations)\n",iterations); //printf("Optimization finished (maxdiff=%.5f).\n",maxdiff); runtime_end=get_runtime(); if(verbosity>=2) { printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n", ((float)runtime_end-(float)runtime_start)/100.0, (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start), (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start)); } else { printf("Runtime in cpu-seconds: %.2f\n", (runtime_end-runtime_start)/100.0); } if(learn_parm->remove_inconsistent) { inconsistentnum=0; for(i=0;i<totdoc;i++) if(inconsistent[i]) inconsistentnum++; // printf("Number of SV: %ld (plus %ld inconsistent examples)\n", // model->sv_num-1,inconsistentnum); } else { upsupvecnum=0; for(i=1;i<model->sv_num;i++) { if(fabs(model->alpha[i]) >= (learn_parm->svm_cost[(model->supvec[i])->docnum]- learn_parm->epsilon_a)) upsupvecnum++; } //printf("Number of SV: %ld (including %ld at upper bound)\n", // model->sv_num-1,upsupvecnum); } if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) { loss=0; model_length=0; for(i=0;i<totdoc;i++) { if((lin[i]-model->b)*(double)label[i] < (-learn_parm->eps+(double)label[i]*c[i])-learn_parm->epsilon_crit) loss+=-learn_parm->eps+(double)label[i]*c[i]-(lin[i]-model->b)*(double)label[i]; model_length+=a[i]*label[i]*lin[i]; } model_length=sqrt(model_length); //fprintf(stdout,"L1 loss: loss=%.5f\n",loss);//////////// //fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);///////////// example_length=estimate_sphere(model,kernel_parm); //fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n", // length_of_longest_document_vector(docs,totdoc,kernel_parm));////////// } /*if(verbosity>=1) { printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic); }*/ } if(learn_parm->alphafile[0]) write_alphas(learn_parm->alphafile,a,label,totdoc); /* this makes sure the model we return does not contain pointers to the temporary documents */ for(i=1;i<model->sv_num;i++) { j=model->supvec[i]->docnum; if(j >= (totdoc/2)) { j=totdoc-j-1; } model->supvec[i]=&(docs_org[j]); } shrink_state_cleanup(&shrink_state); free(docs); free(label); free(inconsistent); free(unlabeled); free(c); free(a); free(a_fullset); free(xi_fullset); free(lin); free(learn_parm->svm_cost);}/*void svm_learn_ranking(DOC *docs, double *rankvalue, long int totdoc, long int totwords, LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm, KERNEL_CACHE *kernel_cache, MODEL *model) // docs: Training vectors (x-part) // // rankvalue: Training target values that determine the ranking // // totdoc: Number of examples in docs/label // // totwords: Number of features (i.e. highest feature index) // // learn_parm: Learning paramenters // // kernel_parm: Kernel paramenters // // kernel_cache:Initialized Cache of size 1*totdoc // // model: Returns learning result (assumed empty before called) //{ DOC *docdiff; long i,j,k,totpair; double *target,*alpha; long *greater,*lesser; MODEL pairmodel; if(kernel_parm->kernel_type != LINEAR) { printf("Learning rankings is not implemented for non-linear kernels in this version!\n"); printf("WARNING: Using linear kernel instead!\n"); kernel_parm->kernel_type = LINEAR; } totpair=0; for(i=0;i<totdoc;i++) { for(j=i+1;j<totdoc;j++) { if((docs[i].queryid==docs[j].queryid) && (rankvalue[i] != rankvalue[j])) { totpair++; } } } printf("Constructing %ld rank constraints...",totpair); fflush(stdout); docdiff=(DOC *)my_malloc(sizeof(DOC)*totpair); target=(double *)my_malloc(sizeof(double)*totpair); greater=(long *)my_malloc(sizeof(long)*totpair); lesser=(long *)my_malloc(sizeof(long)*totpair); k=0; for(i=0;i<totdoc;i++) { for(j=i+1;j<totdoc;j++) { if(docs[i].queryid == docs[j].queryid) { if(rankvalue[i] > rankvalue[j]) { docdiff[k].words=sub_ss(docs[i].words,docs[j].words); docdiff[k].twonorm_sq=sprod_ss(docdiff[k].words,docdiff[k].words); docdiff[k].docnum=k; docdiff[k].costfactor=1; target[k]=1; greater[k]=i; lesser[k]=j; k++; } else if(rankvalue[i] < rankvalue[j]) { docdiff[k].words=sub_ss(docs[i].words,docs[j].words); docdiff[k].twonorm_sq=sprod_ss(docdiff[k].words,docdiff[k].words); docdiff[k].docnum=k; docdiff[k].costfactor=1; target[k]=-1; greater[k]=i; lesser[k]=j; k++; } } } } printf("done.\n"); fflush(stdout); // must use unbiased hyperplane on difference vectors // learn_parm->biased_hyperplane=0; svm_learn_classification(docdiff,target,totpair,totwords,learn_parm, kernel_parm,NULL,&pairmodel); // Transfer the result into a more compact model. If you would like to output the original model on pairs of documents, see below. // alpha=(double *)my_malloc(sizeof(double)*totdoc); for(i=0;i<totdoc;i++) { alpha[i]=0; } for(i=1;i<pairmodel.sv_num;i++) { alpha[lesser[(pairmodel.supvec[i])->docnum]]-=pairmodel.alpha[i]; alpha[greater[(pairmodel.supvec[i])->docnum]]+=pairmodel.alpha[i]; } model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2)); model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2)); model->index = (long *)my_malloc(sizeof(long)*(totdoc+2)); model->supvec[0]=0; // element 0 reserved and empty for now // model->alpha[0]=0; model->sv_num=1; for(i=0;i<totdoc;i++) { if(alpha[i]) { model->supvec[model->sv_num]=&docs[i]; model->alpha[model->sv_num]=alpha[i]; model->index[i]=model->sv_num; model->sv_num++; } else { model->index[i]=-1; } } model->at_upper_bound=0; model->b=0; model->lin_weights=NULL; model->totwords=totwords; model->totdoc=totdoc; model->kernel_parm=(*kernel_parm); model->loo_error=-1; model->loo_recall=-1; model->loo_precision=-1; model->xa_error=-1; model->xa_recall=-1; model->xa_precision=-1; free(alpha); free(greater); free(lesser); free(target); // If you would like to output the original model on pairs of// //document, replace the following lines with '(*model)=pairmodel;' // for(i=0;i<totpair;i++) free(docdiff[i].words); free(docdiff); free(pairmodel.supvec); free(pairmodel.alpha); free(pairmodel.index);}*/long optimize_to_convergence(DOC *docs, long int *label, long int totdoc, long int totwords, LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm, KERNEL_CACHE *kernel_cache, SHRINK_STATE *shrink_state, MODEL *model, long int *inconsistent, long int *unlabeled, double *a, double *lin, double *c, TIMING *timing_profile, double *maxdiff, long int heldout, long int retrain) // docs: Training vectors (x-part) // // label: Training labels/value (y-part, zero if test example for transduction) // // totdoc: Number of examples in docs/label // // totwords: Number of features (i.e. highest feature index) // // laern_parm: Learning paramenters // // kernel_parm: Kernel paramenters // // kernel_cache: Initialized/partly filled Cache // // shrink_state: State of active variables // // model: Returns learning result // // inconsistent: examples thrown out as inconstistent // // unlabeled: test examples for transduction // // a: alphas // // lin: linear component of gradient // // c: upper bounds on alphas // // maxdiff: returns maximum violation of KT-conditions // // heldout: marks held-out example for leave-one-out (or -1) // // retrain: selects training mode (1=regular / 2=holdout) //{ long *chosen,*key,i,j,jj,*last_suboptimal_at,noshrink; long inconsistentnum,choosenum,already_chosen=0,iteration; long misclassified,supvecnum=0,*active2dnum,inactivenum; long *working2dnum,*selexam; long activenum; double criterion,eq; double *a_old; long t0=0,t1=0,t2=0,t3=0,t4=0,t5=0,t6=0; // timing // long transductcycle; long transduction; double epsilon_crit_org; double *selcrit; // buffer for sorting // CFLOAT *aicache; // buffer to keep one row of hessian // double *weights; // buffer for weight vector in linear case // QP qp; // buffer for one quadratic program // epsilon_crit_org=learn_parm->epsilon_crit; // save org // if(kernel_parm->kernel_type == LINEAR) { learn_parm->epsilon_crit=2.0; kernel_cache=NULL; // caching makes no sense for linear kernel // } learn_parm->epsilon_shrink=2; (*maxdiff)=1; learn_parm->totwords=totwords; chosen = (long *)my_malloc(sizeof(long)*totdoc);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -