📄 blowhole.cpp
字号:
/***************************************************//*! \class BlowHole \brief STK clarinet physical model with one register hole and one tonehole. This class is based on the clarinet model, with the addition of a two-port register hole and a three-port dynamic tonehole implementation, as discussed by Scavone and Cook (1998). In this implementation, the distances between the reed/register hole and tonehole/bell are fixed. As a result, both the tonehole and register hole will have variable influence on the playing frequency, which is dependent on the length of the air column. In addition, the highest playing freqeuency is limited by these fixed lengths. This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. Control Change Numbers: - Reed Stiffness = 2 - Noise Gain = 4 - Tonehole State = 11 - Register State = 1 - Breath Pressure = 128 by Perry R. Cook and Gary P. Scavone, 1995 - 2005.*//***************************************************/#include "BlowHole.h"#include "SKINI.msg"#if !defined(SYMBIAN)#include <math.h>#else#include "symbmath.h"#endifBlowHole :: BlowHole(StkFloat lowestFrequency){ length_ = (unsigned long) (Stk::sampleRate() / lowestFrequency + 1); // delays[0] is the delay line between the reed and the register vent. delays_[0].setDelay( 5.0 * Stk::sampleRate() / 22050.0 ); // delays[1] is the delay line between the register vent and the tonehole. delays_[1].setMaximumDelay( length_ ); delays_[1].setDelay( length_ >> 1 ); // delays[2] is the delay line between the tonehole and the end of the bore. delays_[2].setDelay( 4.0 * Stk::sampleRate() / 22050.0 ); reedTable_.setOffset( 0.7 ); reedTable_.setSlope( -0.3 ); // Calculate the initial tonehole three-port scattering coefficient StkFloat rb = 0.0075; // main bore radius StkFloat rth = 0.003; // tonehole radius scatter_ = -pow(rth,2) / ( pow(rth,2) + 2*pow(rb,2) ); // Calculate tonehole coefficients and set for initially open. StkFloat te = 1.4 * rth; // effective length of the open hole thCoeff_ = (te*2*Stk::sampleRate() - 347.23) / (te*2*Stk::sampleRate() + 347.23); tonehole_.setA1(-thCoeff_); tonehole_.setB0(thCoeff_); tonehole_.setB1(-1.0); // Calculate register hole filter coefficients double r_rh = 0.0015; // register vent radius te = 1.4 * r_rh; // effective length of the open hole double xi = 0.0; // series resistance term double zeta = 347.23 + 2*PI*pow(rb,2)*xi/1.1769; double psi = 2*PI*pow(rb,2)*te / (PI*pow(r_rh,2)); StkFloat rhCoeff = (zeta - 2 * Stk::sampleRate() * psi) / (zeta + 2 * Stk::sampleRate() * psi); rhGain_ = -347.23 / (zeta + 2 * Stk::sampleRate() * psi); vent_.setA1( rhCoeff ); vent_.setB0(1.0); vent_.setB1(1.0); // Start with register vent closed vent_.setGain(0.0); vibrato_.setFrequency((StkFloat) 5.735); outputGain_ = 1.0; noiseGain_ = 0.2; vibratoGain_ = 0.01;}BlowHole :: ~BlowHole(){}void BlowHole :: clear(){ delays_[0].clear(); delays_[1].clear(); delays_[2].clear(); filter_.tick( 0.0 ); tonehole_.tick( 0.0 ); vent_.tick( 0.0 );}void BlowHole :: setFrequency(StkFloat frequency){ StkFloat freakency = frequency; if ( frequency <= 0.0 ) {#if !defined(SYMBIAN) std::cerr << "BlowHole: setFrequency parameter is less than or equal to zero!" << std::endl;#endif freakency = 220.0; } // Delay = length - approximate filter delay. StkFloat delay = (Stk::sampleRate() / freakency) * 0.5 - 3.5; delay -= delays_[0].getDelay() + delays_[2].getDelay(); if (delay <= 0.0) delay = 0.3; else if (delay > length_) delay = length_; delays_[1].setDelay(delay);}void BlowHole :: setVent(StkFloat newValue){ // This method allows setting of the register vent "open-ness" at // any point between "Open" (newValue = 1) and "Closed" // (newValue = 0). StkFloat gain; if (newValue <= 0.0) gain = 0.0; else if (newValue >= 1.0) gain = rhGain_; else gain = newValue * rhGain_; vent_.setGain( gain );}void BlowHole :: setTonehole(StkFloat newValue){ // This method allows setting of the tonehole "open-ness" at // any point between "Open" (newValue = 1) and "Closed" // (newValue = 0). StkFloat new_coeff; if ( newValue <= 0.0 ) new_coeff = 0.9995; else if ( newValue >= 1.0 ) new_coeff = thCoeff_; else new_coeff = (newValue * (thCoeff_ - 0.9995)) + 0.9995; tonehole_.setA1( -new_coeff ); tonehole_.setB0( new_coeff );}void BlowHole :: startBlowing(StkFloat amplitude, StkFloat rate){ envelope_.setRate( rate ); envelope_.setTarget( amplitude );}void BlowHole :: stopBlowing(StkFloat rate){ envelope_.setRate( rate ); envelope_.setTarget( 0.0 ); }void BlowHole :: noteOn(StkFloat frequency, StkFloat amplitude){ this->setFrequency( frequency ); this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 ); outputGain_ = amplitude + 0.001;#if defined(_STK_DEBUG_) errorString_ << "BlowHole::NoteOn: frequency = " << frequency << ", amplitude = " << amplitude << "."; handleError( StkError::DEBUG_WARNING );#endif}void BlowHole :: noteOff(StkFloat amplitude){ this->stopBlowing( amplitude * 0.01 );#if defined(_STK_DEBUG_) errorString_ << "BlowHole::NoteOff: amplitude = " << amplitude << "."; handleError( StkError::DEBUG_WARNING );#endif}StkFloat BlowHole :: computeSample(){ StkFloat pressureDiff; StkFloat breathPressure; StkFloat temp; // Calculate the breath pressure (envelope + noise + vibrato) breathPressure = envelope_.tick(); breathPressure += breathPressure * noiseGain_ * noise_.tick(); breathPressure += breathPressure * vibratoGain_ * vibrato_.tick(); // Calculate the differential pressure = reflected - mouthpiece pressures pressureDiff = delays_[0].lastOut() - breathPressure; // Do two-port junction scattering for register vent StkFloat pa = breathPressure + pressureDiff * reedTable_.tick( pressureDiff ); StkFloat pb = delays_[1].lastOut(); vent_.tick( pa+pb ); lastOutput_ = delays_[0].tick( vent_.lastOut()+pb ); lastOutput_ *= outputGain_; // Do three-port junction scattering (under tonehole) pa += vent_.lastOut(); pb = delays_[2].lastOut(); StkFloat pth = tonehole_.lastOut(); temp = scatter_ * (pa + pb - 2 * pth); delays_[2].tick( filter_.tick(pa + temp) * -0.95 ); delays_[1].tick( pb + temp ); tonehole_.tick( pa + pb - pth + temp ); return lastOutput_;}void BlowHole :: controlChange(int number, StkFloat value){ StkFloat norm = value * ONE_OVER_128; if ( norm < 0 ) { norm = 0.0;#if !defined(SYMBIAN) errorString_ << "BlowHole::controlChange: control value less than zero ... setting to zero!"; handleError( StkError::WARNING );#endif } else if ( norm > 1.0 ) { norm = 1.0;#if !defined(SYMBIAN) errorString_ << "BlowHole::controlChange: control value greater than 128.0 ... setting to 128.0!"; handleError( StkError::WARNING );#endif } if (number == __SK_ReedStiffness_) // 2 reedTable_.setSlope( -0.44 + (0.26 * norm) ); else if (number == __SK_NoiseLevel_) // 4 noiseGain_ = ( norm * 0.4); else if (number == __SK_ModFrequency_) // 11 this->setTonehole( norm ); else if (number == __SK_ModWheel_) // 1 this->setVent( norm ); else if (number == __SK_AfterTouch_Cont_) // 128 envelope_.setValue( norm ); else {#if !defined(SYMBIAN) errorString_ << "BlowHole::controlChange: undefined control number (" << number << ")!"; handleError( StkError::WARNING );#endif }#if defined(_STK_DEBUG_)#if !defined(SYMBIAN) errorString_ << "BlowHole::controlChange: number = " << number << ", value = " << value << "."; handleError( StkError::DEBUG_WARNING );#endif#endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -