⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glmhess.m

📁 Bayes网络工具箱
💻 M
字号:
function [h, dh] = glmhess(net, x, t, dh)%GLMHESS Evaluate the Hessian matrix for a generalised linear model.%%	Description%	H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a%	matrix X of input values, and a matrix T of target values and returns%	the full Hessian matrix H corresponding to the second derivatives of%	the negative log posterior distribution, evaluated for the current%	weight and bias values as defined by NET. Note that the target data%	is not required in the calculation, but is included to make the%	interface uniform with NETHESS.  For linear and logistic outputs, the%	computation is very simple and is  done (in effect) in one line in%	GLMTRAIN.%%	See also%	GLM, GLMTRAIN, HESSCHEK, NETHESS%%	Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% Made to look more like mlphess by K. Murphyif nargin == 3  % Data term in Hessian needs to be computed  dh = datahess(net, x, t);endif isfield(net, 'beta')  h = net.beta*dh;else  h = dh;endif isfield(net, 'alpha')  if size(net.alpha) == [1 1]    h = h + net.alpha*eye(net.nwts);  else    h = h + diag(net.index*net.alpha);  end end%%%%%%%%%%function dh = datahess(net, x, t)ndata = size(x, 1);nparams = net.nwts;nout = net.nout;p = glmfwd(net, x);dh = zeros(nparams);	% Full Hessian matrixinputs = [x ones(ndata, 1)];switch net.actfn  case 'linear'    % No weighting function here    out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)];    for j = 1:nout      dh = rearrange_hess(net, j, out_hess, dh);    end  case 'logistic'    % Each output is independent    e = ones(1, net.nin+1);    link_deriv = p.*(1-p);    out_hess = zeros(net.nin+1);    for j = 1:nout      inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e);      out_hess = inputs'*inputs;   % Hessian for this output      dh = rearrange_hess(net, j, out_hess, dh);    end      case 'softmax'    bb_start = nparams - nout + 1;	% Start of bias weights block    ex_hess = zeros(nparams);	% Contribution to Hessian from single example    for m = 1:ndata      X = x(m,:)'*x(m,:);      a = diag(p(m,:))-((p(m,:)')*p(m,:));      ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X);      ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout);      temp = kron(a, x(m,:));      ex_hess(bb_start:nparams, 1:nparams-nout) = temp;      ex_hess(1:nparams-nout, bb_start:nparams) = temp';      dh = dh + ex_hess;    endend  %%%%%%%%%%%%function dh = rearrange_hess(net, j, out_hess, dh)% Because all the biases come after all the input weights,% we have to rearrange the blocks that make up the network Hessian.% This function assumes that we are on the jth output and that all outputs% are independent.bb_start = net.nwts - net.nout + 1;	% Start of bias weights blockob_start = 1+(j-1)*net.nin; 	% Start of weight block for jth outputob_end = j*net.nin;         	% End of weight block for jth outputb_index = bb_start+(j-1);   	% Index of bias weight% Put input weight block in right placedh(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin);% Put second derivative of bias weight in right placedh(b_index, b_index) = out_hess(net.nin+1, net.nin+1);% Put cross terms (input weight v bias weight) in right placedh(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin);dh(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1);return 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -