📄 jpeg_code.cpp
字号:
//////////////////////////////////////////////////////////////////////////
//JPEG_CODE类的实现
#include "StdAfx.h"
#include "jpeg_code.h"
#include "DIBDC.h"
//////////////////////////////////////////////////////////////////////////
//JPEG用到的常变量以及基本码表
// DCT转换尺寸
static const BYTE DCTSIZE = 8;
// DCT转换块长度
static const BYTE DCTBLOCKSIZE = 64;
// 存放VLI表
BYTE VLI_TAB[4096];
BYTE* pVLITAB; //VLI_TAB的别名,使下标在-2048-2048
// 存放2个量化表
BYTE YQT[DCTBLOCKSIZE];
BYTE UVQT[DCTBLOCKSIZE];
// 存放2个FDCT变换要求格式的量化表
FLOAT YQT_DCT[DCTBLOCKSIZE];
FLOAT UVQT_DCT[DCTBLOCKSIZE];
//存放4个Huffman表
HUFFCODE STD_DC_Y_HT[12];
HUFFCODE STD_DC_UV_HT[12];
HUFFCODE STD_AC_Y_HT[256];
HUFFCODE STD_AC_UV_HT[256];
static BYTE bytenew=0; // The byte that will be written in the JPG file
static CHAR bytepos=7; //bit position in the byte we write (bytenew)
//should be<=7 and >=0
static USHORT mask[16]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
static const DOUBLE aanScaleFactor[8] = {1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379};
//量化后DC范围在-2^11 - 2^11 - 1之间,量化后AC范围在-2^10 - 2^10 - 1之间
static const INT AC_MAX_QUANTED = 1023; //量化后AC的最大值
static const INT AC_MIN_QUANTED = -1024; //量化后AC的最小值
static const INT DC_MAX_QUANTED = 2047; //量化后DC的最大值
static const INT DC_MIN_QUANTED = -2048; //量化后DC的最小值
//标准亮度信号量化模板
const static BYTE std_Y_QT[64] =
{
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109,103,77,
24, 35, 55, 64, 81, 104,113,92,
49, 64, 78, 87, 103,121,120,101,
72, 92, 95, 98, 112,100,103,99
};
//标准色差信号量化模板
const static BYTE std_UV_QT[64] =
{
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99 ,99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
//正向 8x8 Z变换表
const static BYTE FZBT[64] =
{
0, 1, 5, 6, 14,15,27,28,
2, 4, 7, 13,16,26,29,42,
3, 8, 12,17,25,30,41,43,
9, 11,18,24,31,40,44,53,
10,19,23,32,39,45,52,54,
20,22,33,38,46,51,55,60,
21,34,37,47,50,56,59,61,
35,36,48,49,57,58,62,63
};
//色彩空间系数常量,依次是411,111,211采样的系数,211采样的2种方式的系数相同
static const FLOAT COLORSPACECOEF[4][3] = {{1,0.25,0.25},{1,1,1},{1,0.5,0.5},{1,0.5,0.5}};
//MCU中各型号分量出现的比率
static const BYTE MCUIndex[4][3] = {{4,1,1},{1,1,1},{2,1,1},{2,1,1}};
// 标准Huffman表 (cf. JPEG standard section K.3)
static BYTE STD_DC_Y_NRCODES[17]={0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};
static BYTE STD_DC_Y_VALUES[12]={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
static BYTE STD_DC_UV_NRCODES[17]={0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0};
static BYTE STD_DC_UV_VALUES[12]={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
static BYTE STD_AC_Y_NRCODES[17]={0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0X7D };
static BYTE STD_AC_Y_VALUES[162]= {
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };
static BYTE STD_AC_UV_NRCODES[17]={0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0X77};
static BYTE STD_AC_UV_VALUES[162]={
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };
//////////////////////////////////////////////////////////////////////////
//具体方法的实现
//////////////////////////////////////////////////////////////////////////
//JPEG编码的函数
// bmFile:输入文件
// jpgFile:输出文件
// Q:质量
void JPEG_CODE::Invoke(string bmFile, string jpgFile, long Q)
{
//////////////////////////////////////////////////////////////////////////
//先把图片存储到Dib中,一会访问文件,这个就无法读取了
CDIBDC *Dib;
Dib=NULL;
CString FN;
FN.Format("%s",bmFile.c_str());
Dib=new CDIBDC;
Dib->Load(FN);
bytenew=0;
bytepos=7;
FILE* pFile; // 输入文件句柄
if ((pFile = fopen(bmFile.c_str(),"rb")) == NULL) // 打开文件
{
throw("open bmp file error!");
}
// 获取jpeg编码需要的bmp数据结构,jpeg要求数据缓冲区的高和宽为8或16的倍数(视采样方式而定)
BMBUFINFO bmBuffInfo = GetBMBuffSize(pFile);
imgWidth = bmBuffInfo.imgWidth; // 图像宽
imgHeight = bmBuffInfo.imgHeight; // 图像高
buffWidth = bmBuffInfo.buffWidth; // 缓冲宽
buffHeight = bmBuffInfo.buffHeight; // 缓冲高
size_t buffSize = buffHeight * buffWidth * 3; // 缓冲长度,因为是24bits,所以*3
BYTE* bmData = new BYTE[buffSize]; // 申请内存空间
GetBMData(Dib->GetIndex(),pFile, bmData, bmBuffInfo); // 获取数据
fclose(pFile); // 关闭文件
//=====================================
// 计算编码需要的缓冲区,RGB信号需要别分别编码,所以需要3个缓冲区,这里只是1:1:1所以是一样大
size_t yuvBuffSize = buffWidth * buffHeight;
BYTE* pYBuff = new BYTE[yuvBuffSize];
BYTE* pUBuff = new BYTE[yuvBuffSize];
BYTE* pVBuff = new BYTE[yuvBuffSize];
// 将RGB信号转换为YUV信号
BGR2YUV111(bmData,pYBuff,pUBuff,pVBuff);
// 将信号分割为8x8的块
DivBuff(pYBuff, buffWidth, buffHeight, DCTSIZE, DCTSIZE );
DivBuff(pUBuff, buffWidth, buffHeight, DCTSIZE, DCTSIZE );
DivBuff(pVBuff, buffWidth, buffHeight, DCTSIZE, DCTSIZE );
SetQuantTable(std_Y_QT,YQT, Q); // 设置Y量化表
SetQuantTable(std_UV_QT,UVQT, Q); // 设置UV量化表
InitQTForAANDCT(); // 初始化AA&N需要的量化表
pVLITAB=VLI_TAB + 2048; // 设置VLI_TAB的别名
BuildVLITable(); // 计算VLI表
pOutFile = fopen(jpgFile.c_str(),"wb");
// 写入各段
WriteSOI();
WriteAPP0();
WriteDQT();
WriteSOF();
WriteDHT();
WriteSOS();
// 计算Y/UV信号的交直分量的huffman表,这里使用标准的huffman表,并不是计算得出,缺点是文件略长,但是速度快
BuildSTDHuffTab(STD_DC_Y_NRCODES,STD_DC_Y_VALUES,STD_DC_Y_HT);
BuildSTDHuffTab(STD_AC_Y_NRCODES,STD_AC_Y_VALUES,STD_AC_Y_HT);
BuildSTDHuffTab(STD_DC_UV_NRCODES,STD_DC_UV_VALUES,STD_DC_UV_HT);
BuildSTDHuffTab(STD_AC_UV_NRCODES,STD_AC_UV_VALUES,STD_AC_UV_HT);
// 处理单元数据
ProcessData(pYBuff,pUBuff,pVBuff);
WriteEOI();
fclose(pOutFile);
delete[] bmData;
}
//////////////////////////////////////////////////////////////////////////
// 获取BMP文件输出缓冲区信息
BMBUFINFO JPEG_CODE::GetBMBuffSize(FILE* pFile)
{
BITMAPFILEHEADER bmHead; //文件头信息块
BITMAPINFOHEADER bmInfo; //图像描述信息块
BMBUFINFO bmBuffInfo;
UINT colSize = 0;
UINT rowSize = 0;
fseek(pFile,0,SEEK_SET); //将读写指针指向文件头部
fread(&bmHead,sizeof(bmHead),1,pFile); //读取文件头信息块
fread(&bmInfo,sizeof(bmInfo),1,pFile); //读取位图信息块
// 计算填充后列数,jpeg编码要求缓冲区的高和宽为8或16的倍数
if (bmInfo.biWidth % 8 == 0)
{
colSize = bmInfo.biWidth;
}
else
{
colSize = bmInfo.biWidth + 8 - (bmInfo.biWidth % 8);
}
// 计算填充后行数
if (bmInfo.biHeight % 8 == 0)
{
rowSize = bmInfo.biHeight;
}
else
{
rowSize = bmInfo.biHeight + 8 - (bmInfo.biHeight % 8);
}
bmBuffInfo.BitCount = 24;
bmBuffInfo.buffHeight = rowSize; // 缓冲区高
bmBuffInfo.buffWidth = colSize; // 缓冲区宽
bmBuffInfo.imgHeight = bmInfo.biHeight; // 图像高
bmBuffInfo.imgWidth = bmInfo.biWidth; // 图像宽
return bmBuffInfo;
}
//////////////////////////////////////////////////////////////////////////
// 获取图像数据
void JPEG_CODE::GetBMData(BYTE**GetIndex,FILE* pFile, BYTE* pBuff, BMBUFINFO buffInfo)
{
BITMAPFILEHEADER bmHead; // 文件头信息块
BITMAPINFOHEADER bmInfo; // 图像描述信息块
size_t dataLen = 0; // 文件数据区长度
long alignBytes = 0; // 为对齐4字节需要补足的字节数
UINT lineSize = 0;
fseek(pFile,0,SEEK_SET); // 将读写指针指向文件头部
fread(&bmHead,sizeof(bmHead),1,pFile); // 读取文件头信息块
fread(&bmInfo,sizeof(bmInfo),1,pFile); // 读取位图信息块
//计算对齐的字节数
alignBytes = (((bmInfo.biWidth * bmInfo.biBitCount) + 31) & ~31) / 8L
- (bmInfo.biWidth * bmInfo.biBitCount) / 8L; // 计算图象文件数据段行补齐字节数
//计算数据缓冲区长度
lineSize = bmInfo.biWidth * 3;
// 因为bmp文件数据是倒置的所以从最后一行开始读
if (bmInfo.biBitCount==24) {
for (int i = bmInfo.biHeight - 1; i >= 0; --i)
{
fread(&pBuff[buffInfo.buffWidth * i * 3],lineSize,1,pFile);
fseek(pFile,alignBytes,SEEK_CUR); // 跳过对齐字节
}
}
else
{
//////////////////////////////////////////////////////////////////////////
//处理不是24位的位图,只要把图像的数据付给pBuff就可以了,仍然把图片按照24位
//位图的JPEG进行压缩
int s,t;
for(int i=0;i<buffHeight;i++)
for(int j=0;j<buffWidth;j++)
{
if(i>=bmInfo.biHeight-1)
s=bmInfo.biHeight-1;
else
s=i;
if(j>=bmInfo.biWidth-1)
t=bmInfo.biWidth-1;
else
t=j;
pBuff[buffWidth*3*i+3*j]=GetIndex[s][t*4];
pBuff[buffWidth*3*i+3*j+1]=GetIndex[s][t*4+1];
pBuff[buffWidth*3*i+3*j+2]=GetIndex[s][t*4+2];
}
}
}
//////////////////////////////////////////////////////////////////////////
// 转换色彩空间BGR-YUV,111采样
void JPEG_CODE::BGR2YUV111(BYTE* pBuf, BYTE* pYBuff, BYTE* pUBuff, BYTE* pVBuff)
{
DOUBLE tmpY = 0; //临时变量
DOUBLE tmpU = 0;
DOUBLE tmpV = 0;
BYTE tmpB = 0;
BYTE tmpG = 0;
BYTE tmpR = 0;
UINT i = 0;
size_t elemNum = _msize(pBuf) / 3; //缓冲长度
for (i = 0; i < elemNum; i++)
{
tmpB = pBuf[i * 3];
tmpG = pBuf[i * 3 + 1];
tmpR = pBuf[i * 3 + 2];
tmpY = 0.299 * tmpR + 0.587 * tmpG + 0.114 * tmpB;
tmpU = -0.1687 * tmpR - 0.3313 * tmpG + 0.5 * tmpB + 128;
tmpV = 0.5 * tmpR - 0.4187 * tmpG - 0.0813 * tmpB + 128;
//if(tmpY > 255){tmpY = 255;} //输出限制
//if(tmpU > 255){tmpU = 255;}
//if(tmpV > 255){tmpV = 255;}
//if(tmpY < 0){tmpY = 0;}
//if(tmpU < 0){tmpU = 0;}
//if(tmpV < 0){tmpV = 0;}
pYBuff[i] = tmpY; //放入输入缓冲
pUBuff[i] = tmpU;
pVBuff[i] = tmpV;
}
}
//////////////////////////////////////////////////////////////////////////
// lpBuf:输入缓冲,处理后的数据也存储在这里
void JPEG_CODE::DivBuff(BYTE* pBuf,UINT width,UINT height,UINT xLen,UINT yLen)
{
UINT xBufs = width / xLen; //X轴方向上切割数量
UINT yBufs = height / yLen; //Y轴方向上切割数量
UINT tmpBufLen = xBufs * xLen * yLen; //计算临时缓冲区长度
BYTE* tmpBuf = new BYTE[tmpBufLen]; //创建临时缓冲
UINT i = 0; //临时变量
UINT j = 0;
UINT k = 0;
UINT n = 0;
UINT bufOffset = 0; //切割开始的偏移量
for (i = 0; i < yBufs; ++i) //循环Y方向切割数量
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -