📄 x2t.m
字号:
function T=x2t(x,str)
% T=x2t(x,str)
%
% Converts a generalized position vector x, which contains
% position and orientation vectors of B with respect to A,
% into transformation matrix T between B and A coordinate frames.
% Orientation can be expressed with quaternions, euler angles
% (xyz or zxz convention), unit vector and rotation angle.
% Also both orientation and position can be expressed with
% Denavitt-Hartemberg parameters.
%
% ---------------------------------------------------------------------------
%
% The transformation matrix T between B and A coordinate
% frames is a 4 by 4 matrix such that:
% T(1:3,1:3) = Orientation matrix between B and A = unit vectors
% of x,y,z axes of B expressed in the A coordinates.
% T(1:3,4) = Origin of B expressed in A coordinates.
% T(4,1:3) = zeros(1,3)
% T(4,4) = 1
%
% ---------------------------------------------------------------------------
%
% The generalized position vector x contains the origin of B
% expressed in the A coordinates in the first four entries,
% and orientation of B with respect to A in the last four entries.
% In more detail, its shape depends on the value of str as
% specified below :
%
% ---------------------------------------------------------------------------
%
% str='van' : UNIT VECTOR AND ROTATION ANGLE
%
% [ Ox ] origin of the B coordinate frame
% x(1:4) = [ Oy ] with respect to A.
% [ Oz ]
% [ 1 ]
%
% [ Vx ] Vx,Vy,Vz = unit vector respect to A,
% x(5:8) = [ Vy ] which B is rotated about.
% [ Vz ]
% [ Th ] Th = angle which B is rotated (-pi,pi].
% ---------------------------------------------------------------------------
%
% str='qua' : UNIT QUATERNION
%
% [ Ox ] origin of the B coordinate frame
% x(1:4) = [ Oy ] with respect to A.
% [ Oz ]
% [ 1 ]
%
% [ q1 ] q1,q2,q3 = V*sin(Th/2)
% x(5:8) = [ q2 ] q0 = cos(Th/2) where :
% [ q3 ] V = unit vector respect to A, which B is
% [ q0 ] rotated about, Th = angle which B is rotated (-pi,pi].
% ---------------------------------------------------------------------------
%
% str='erp' : EULER-RODRIGUEZ PARAMETERS
%
% [ Ox ] origin of the B coordinate frame
% x(1:4) = [ Oy ] with respect to A.
% [ Oz ]
% [ 1 ]
%
% [ r1 ] r1,r2,r3 = V*tan(Th/2), where :
% x(5:8) = [ r2 ] V = unit vector with respect to A, which B is
% [ r3 ] rotated about.
% [ 0 ] Th = angle which B is rotated (-pi,pi) (<> pi).
% ---------------------------------------------------------------------------
%
% str='rpy' : ROLL, PITCH, YAW ANGLES (euler x-y-z convention)
%
% [ Ox ] origin of the B coordinate frame
% x(1:4) = [ Oy ] with respect to A.
% [ Oz ]
% [ 1 ]
%
% [ r ] r = roll angle ( fi (-pi,pi], about x, )
% x(5:8) = [ p ] p = pitch angle ( theta (-pi,pi], about y, <> +-pi/2)
% [ y ] y = yaw angle ( psi (-pi,pi], about z, )
% [ 0 ]
% ---------------------------------------------------------------------------
%
% str='rpm' : ROTATION, PRECESSION, MUTATION ANGLES (euler z-x-z convention)
%
% [ Ox ] origin of the B coordinate frame
% x(1:4) = [ Oy ] with respect to A.
% [ Oz ]
% [ 1 ]
%
% [ r ] r = rotation angle ( (-pi,pi] ,about z )
% x(5:8) = [ p ] p = precession angle ( (-pi,pi] ,about x , <> 0,pi )
% [ y ] y = mutation angle ( (-pi,pi] ,about z )
% [ 0 ]
% ---------------------------------------------------------------------------
%
% str='dht' : DENAVITT-HARTEMBERG PARAMETERS
%
% [ b ] [ a ] this four-parameter
% x(1:4) = [ d ] , x(5:8) = [ t ] , description does not involve
% [ 0 ] [ 0 ] a loss of information if and
% [ 0 ] [ 0 ] only if T has this shape:
%
% [ ct -st 0 b ] where :
% T = [ ca*st ca*ct -sa -d*sa ]
% [ sa*st sa*ct ca d*ca ] sa = sin(a), ca = cos(a)
% [ 0 0 0 1 ] st = sin(t), ct = cos(t)
% ---------------------------------------------------------------------------
%
% Example (see also t2x):
% x=[rand(3,1);1;rand(3,1);0];x-t2x(x2t(x,'rpm'),'rpm')
%
% Giampiero Campa 1/11/96
%
rnd=0;
if [ str=='van' size(x)==[8 1] ],
th=x(8);
v=x(5:7);
O=x(1:3);
if norm(v) < 1e-10
disp(' ');
disp('x2T warning: zero lenght vector, direction assumed to be [0 0 1]''.');
disp(' ');
v=[0 0 1]';
end
v=v/norm(v);
R=(cos(th)*eye(3,3)+(1-cos(th))*v*v'-sin(th)*vp(v))';
% This was simpler but a little bit slower
% R=expm(vp(v,th));
T=[ R, O; 0 0 0 1 ];
if rnd,T=round(T*1e14)/1e14;end
% ---------------------------------------------------------------------------
% UNIT QUATERNION
elseif [ str=='qua' size(x)==[8 1] ],
q=x(5:8);
O=x(1:3);
if norm(q) < 1e-10
disp(' ');
disp('x2T warning: zero lenght vector, direction assumed to be [0 0 0 1]''.');
disp(' ');
q=[0 0 0 1]';
end
q=q/norm(q);
qv=q(1:3);
q0=q(4);
R=((q0'*q0-qv'*qv)*eye(3,3)+2*(qv*qv'-q0*vp(qv)))';
T=[ R, O; 0 0 0 1 ];
if rnd,T=round(T*1e14)/1e14;end
% ---------------------------------------------------------------------------
% EULER-RODRIGUEZ PARAMETERS
elseif [ str=='erp' size(x)==[8 1] ],
r=x(5:7);
O=x(1:3);
S=vp(r);
R=(eye(3,3)+2/(1+r'*r)*S*(S-eye(3,3)))';
T=[ R, O; 0 0 0 1 ];
if rnd,T=round(T*1e14)/1e14;end
% ---------------------------------------------------------------------------
% ROLL, PITCH, YAW ANGLES (euler x-y-z convention)
elseif [ str=='rpy' size(x)==[8 1] ],
O=x(1:3);
r=x(5);
p=x(6);
y=x(7);
R=expm(vp([0 0 1]',y))*expm(vp([0 1 0]',p))*expm(vp([1 0 0]',r));
T=[ R, O; 0 0 0 1 ];
if rnd,T=round(T*1e14)/1e14;end
% ---------------------------------------------------------------------------
% ROTATION, PRECESSION, MUTATION ANGLES (euler z-x-z convention)
elseif [ str=='rpm' size(x)==[8 1] ],
O=x(1:3);
r=x(5);
p=x(6);
m=x(7);
R=expm(vp([0 0 1]',r))*expm(vp([1 0 0]',p))*expm(vp([0 0 1]',m));
T=[ R, O; 0 0 0 1 ];
if rnd,T=round(T*1e14)/1e14;end
% ---------------------------------------------------------------------------
% DENAVITT-HARTEMBERG PARAMETERS
elseif [ str=='dht' size(x)==[8 1] ],
ca=cos(x(5));
sa=sin(x(5));
ct=cos(x(6));
st=sin(x(6));
b=x(1);
d=x(2);
T=[ ct -st 0 b
ca*st ca*ct -sa -d*sa
sa*st sa*ct ca d*ca
0 0 0 1];
if rnd,T=round(T*1e14)/1e14;end
% ---------------------------------------------------------------------------
% OTHER STRING
else
disp(' ');
disp(' T=x2T(x,str)');
disp(' where x is an 8 by 1 vector (see help for details)');
disp(' and str can be : ''van'',''qua'',''erp'',''rpy'',''rpm'',''dht''. ');
disp(' ');
end
function z=vp(x,y)
% z=vp(x,y); z = 3d cross product of x and y
% vp(x) is the 3d cross product matrix : vp(x)*y=vp(x,y).
%
% by Giampiero Campa.
z=[ 0 -x(3) x(2);
x(3) 0 -x(1);
-x(2) x(1) 0 ];
if nargin>1, z=z*y; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -