📄 tinv.m
字号:
function y = tinv(x,n);
% TINV returns inverse cumulative function of the student distribution
%
% x = tinv(p,v);
%
% Computes the quantile (inverse of the CDF) of a the student
% cumulative distribution with mean m and standard deviation s
% p,v must be matrices of same size, or any one can be a scalar.
%
% see also: TPDF, TCDF, NORMPDF, NORMCDF, NORMINV
% Reference(s):
% $Revision: 1.1 $
% $Id: tinv.m,v 1.1 2003/09/12 12:14:45 schloegl Exp $
% Version 1.28 Date: 13 Mar 2003
% Copyright (c) 2000-2003 by Alois Schloegl <a.schloegl@ieee.org>
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% allocate output memory and check size of arguments
y = x+n-n; % if this line causes an error, size of input arguments do not fit.
n = n+x-x;
y = norminv(x); % do special cases, like x<=0, x>=1, isnan(x), n > 10000;
y(~(n>0)) = NaN;
ix = find(~isnan(x) & (n>0) & (n<10000));
if ~isempty(ix)
if exist('betainv')==2,
z = betainv(2*min(x(ix), 1-x(ix)), n(ix)/2, 1/2);
elseif exist('beta_inv')==2,
z = beta_inv(2*min(x(ix), 1-x(ix)), n(ix)/2, 1/2);
end;
y(ix) = (sign(x(ix) - 1/2).*sqrt(n(ix)./z - n(ix)));
end;
y = reshape(y,size(x));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -