📄 std.m
字号:
function [o,v]=std(i,opt,DIM)
% STD calculates the standard deviation.
%
% [y,v] = std(x [, opt[, DIM]])
%
% opt option
% 0: normalizes with N-1 [default]
% provides the square root of best unbiased estimator of the variance
% 1: normalizes with N,
% this provides the square root of the second moment around the mean
% otherwise:
% best unbiased estimator of the standard deviation (see [1])
%
% DIM dimension
% N STD of N-th dimension
% default or []: first DIMENSION, with more than 1 element
%
% y estimated standard deviation
%
% features:
% - provides an unbiased estimation of the S.D.
% - can deal with NaN's (missing values)
% - dimension argument also in Octave
% - compatible to Matlab and Octave
%
% see also: RMS, SUMSKIPNAN, MEAN, VAR, MEANSQ,
%
%
% References(s):
% [1] http://mathworld.wolfram.com/StandardDeviationDistribution.html
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Revision: 1.10 $
% $Id: std.m,v 1.10 2003/09/26 07:42:22 schloegl Exp $
% Copyright (c) 2000-2003 by Alois Schloegl <a.schloegl@ieee.org>
if nargin>2
[s,n,y] = sumskipnan(i,DIM);
else
[s,n,y] = sumskipnan(i);
if nargin<2,
opt = 0;
end;
end;
y = (y - (real(s).^2+imag(s).^2)./n); % n * (summed squares with removed mean)
if opt==0,
% square root if the best unbiased estimator of the variance
ib = inf;
o = sqrt(y./max(n-1,0)); % normalize
elseif opt==1,
ib = NaN;
o = sqrt(y./n);
else
% best unbiased estimator of the mean
if exist('unique')==2,
% usually only a few n's differ
[N,tmp,tix] = unique(n(:)); % compress n and calculate ib(n)
ib = sqrt(N/2).*gamma((N-1)./2)./gamma(N./2); %inverse b(n) [1]
ib = ib(reshape(tix,size(y))); % expand ib to correct size
elseif exist('histo3')==2,
% usually only a few n's differ
[N,tix] = histo3(n(:)); N = N.X;
ib = sqrt(N/2).*gamma((N-1)./2)./gamma(N./2); %inverse b(n) [1]
ib = ib(reshape(tix,size(y))); % expand ib to correct size
else % gamma is called prod(size(n)) times
ib = sqrt(n/2).*gamma((n-1)./2)./gamma(n./2); %inverse b(n) [1]
end;
o = sqrt(y./n).*ib;
end;
if nargout>1,
v = y.*((max(n-1,0)./(n.*n))-1./(n.*ib.*ib)); % variance of the estimated S.D. ??? needs further checks
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -