📄 findclassifier2.m
字号:
function [CC,Q,tsd,md]=findclassifier2(D,TRIG,cl,T,t0,SWITCH)
% FINDCLASSIFIER2
% is very similar to FINDCLASSIFIER1 but uses a different
% criterion for selecting the time segment.
% [CC,Q,TSD,MD]=findclassifier2(D,TRIG,Class,class_times,t_ref);
%
% D data, each row is one time point
% TRIG trigger time points
% Class class information
% class_times classification times, combinations of times must be in one row
% t_ref reference time for Class 0 (optional)
%
% CC contains LDA and MD classifiers
% Q is a list of classification quality for each time of 'class_times'
% TSD returns the LDA classification
% MD returns the MD classification
%
% [CC,Q,TSD,MD]=findclassifier2(AR,find(trig>0.5)-257,~mod(1:80,2),reshape(1:14*128,16,14*8)');
%
%
% Reference(s):
% [1] Schl鰃l A., Neuper C. Pfurtscheller G.
% Estimating the mutual information of an EEG-based Brain-Computer-Interface
% Biomedizinische Technik 47(1-2): 3-8, 2002.
% [2] A. Schl鰃l, C. Keinrath, R. Scherer, G. Pfurtscheller,
% Information transfer of an EEG-based Bran-computer interface.
% Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri, Italy, Mar 20-22, 2003
% Copyright (C) 1999-2004 by Alois Schloegl <a.schloegl@ieee.org>
% $Id: findclassifier2.m,v 1.3 2004/09/02 22:12:14 schloegl Exp $
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
tsd=[];md=[];
if nargin<6,
SWITCH=0;
end;
if nargin>4,
if isempty(t0),
t0=logical(ones(size(T,1),1));
end;
end;
tmp=cl;tmp(isnan(tmp))=0;
if any(rem(tmp,1) & ~isnan(cl)),
fprintf(2,'Error %s: class information is not integer\n',mfilename);
return;
end;
if length(TRIG)~=length(cl);
fprintf(2,'number of Triggers do not match class information');
end;
CL = unique(cl(~isnan(cl)));
CL = sort(CL);
TRIG = TRIG(:);
if ~all(D(:,1)==1)
% D1=[ones(size(D,1)-1,1),diff(D)];
D = [ones(size(D,1),1),D];
%else
% D1=[ones(size(D,1)-1,1),diff(D(:,2:end))];
end;
% add sufficient NaNs at the beginning and the end
tmp = min(TRIG)+min(min(T))-1;
if tmp<0,
TRIG = TRIG - tmp;
D = [repmat(nan,[-tmp,size(D,2)]);D];
end;
tmp = max(TRIG)+max(max(T))-size(D,1);
if tmp>0,
D = [D;repmat(nan,[tmp,size(D,2)])];
end;
% estimate classification result for all time segments in T - without crossvalidation
CMX = zeros([size(T,1),length(CL)*[1,1]]);
for k = 1:size(T,1),
cmx = zeros(length(CL));
for l = 1:length(CL),
t = perm(TRIG(cl==CL(l)),T(k,:));
%t = t(t<=size(D,1));
[C{k,l},tmp] = covm(D(t(:),:),'M');
end;
%[Q(k),d{k}] = qcmahal({C0r,C{k,:}});
[CC.QC(k),d{k}] = qcmahal({C{k,:}});
%[CC.QC3(k,1:2),d3{k}] = qcloglik({C{k,:}});
CC.QC2(k) = sum(sqrt(d{k}(:)))/(size(d{k},1)*(size(d{k},1)-1));
lnQ(k) = mean(log(d{k}(~eye(length(d{k})))));
for l = 1:length(CL),
t = perm(TRIG(cl==CL(l)),T(k,:));
%t = t(t<=size(D,1));
[tmp] = mdbc({C{k,:}},D(t(:),:));
[tmp,ix] = min(tmp,[],2);
tmp = isnan(tmp);
ix(tmp) = NaN; %NC(1)+1; % not classified; any value but not 1:length(MD)
ix(~tmp) = CL(ix(~tmp));
tmp = histo3([ix;CL(:)]);
cmx(tmp.X,l) = tmp.H-1;
end;
CMX(k,:,:) = cmx;
CC.KAPPA(k) = kappa(cmx);
CC.ACC(k) = sum(diag(cmx))/sum(cmx(:));
t = perm(TRIG,T(k,:));
tmp = repmat(cl(:)',size(T,2),1);
[tmp,acc_g(k,:),kap_g(k,:),H] = gdbc({C{k,:}},D(t(:),:),tmp(:));
end;
CC.GDBC.acc = acc_g;
CC.GDBC.kap = kap_g;
CC.GDBC.H = H;
CC.GDBC.p = tmp;
% identify best classification time
if nargin>4,
tmp = CC.QC;
tmp(~t0) = 0;
[maxQ,CC.TI] = max(tmp); %d{K},
else
[maxQ,CC.TI] = max(CC.QC); %d{K},
end;
CC.qc = [CC.QC',CC.KAPPA',CC.ACC',CC.QC2'];
%plot([CC.QC',CC.KAPPA',CC.ACC',CC.QC2',CC.QC3',t0]);drawnow
[maxQ(1),TI(1)] = max(CC.QC'.*t0); %d{K},
[maxQ(2),TI(2)] = max(CC.KAPPA'.*t0); %d{K},
[maxQ(3),TI(3)] = max(CC.ACC'.*t0); %d{K},
[maxQ(4),TI(4)] = max(CC.QC2'.*t0); %d{K},
%[maxQ(5),TI(5)] = max(CC.QC3(:,1).*t0); %d{K},
%[maxQ(6),TI(6)] = max(CC.QC3(:,2).*t0); %d{K},
CC.TIS = TI;
CC.TI = TI(2);
%if any(TI(1)~=TI),
% fprintf(1,'FINDCLASSIFIER2: \nTIS: %i\t%i\t%i\t%i',TI);
% fprintf(1,'\n %5.3f\t%5.3f\t%5.3f\t%5.3f\n',maxQ);
%end;
% build MD classifier
CC.MD = {C{CC.TI,:}};
CC.IR = mdbc({C{CC.TI,:}});
CC.D = d{CC.TI};
CC.Q = CC.QC(CC.TI);
CC.CMX = squeeze(CMX(CC.TI,:,:));
CC.CMX = CMX;
CC.tsc = T(CC.TI,[1,end]);
m1=decovm(CC.MD{1});
m2=decovm(CC.MD{2});
tmp=mdbc(CC.MD,[1,m1;1,m2]);
CC.scale=[1,1]*max(abs(tmp(:))); % element 1
[maxQ,CC.lnTI] = max(lnQ); %d{K},
CC.DistMXln = d{CC.lnTI};
CC.MDln = {C{CC.lnTI,:}};
% alternative classifier using two different time segments.
if 1,
[Q,d] = qcmahal({C{:}}');
CC.T2.D = d;
[ix,iy] = find(d==max(d(:)));
ix=mod(ix(1)-1,size(C,1))+1;
iy=mod(iy(1)-1,size(C,1))+1;
CC.T2.TI = [ix(1),iy(1)];
CC.T2.MD = {C{ix(1),1},C{iy(1),2}};
end;
% build LDA classifier
if length(CL)==2,
% LDA
C0 = zeros(size(C{CC.TI,1}));
for l=1:length(CL);
[M{l},sd,COV,xc,N,R2] = decovm(C{CC.TI,l});
C0 = C0 + C{CC.TI,l};
end;
[M0,sd,COV0,xc,N,R2] = decovm(C0);
w = COV0\(M{1}'-M{2}');
w0 = M0*w;
%CC.LDA.b = w0;
%CC.LDA.w = -w;
CC.lda = [w0; -w];
% MD
tsd = ldbc(CC.MD,D);
end;
md = mdbc(CC.MD,D);
lld= llbc(CC.MD,D);
% bias correction not used anymore.
CC.BIAS.LDA=0;%mean(tsd);
CC.BIAS.MDA=0;%mean(diff(-md,[],2));
CC.BIAS.GRB=0;%mean(diff(-exp(-md/2),[],2));
% define datatype
CC.datatype = 'Classifier';
CC.Classes = CL;
%% cross-validation with jackknife (leave one trial out)
nc = max(max(T))-min(min(T))+1;
JKD = repmat(nan,[nc,length(CL),length(TRIG)]);
JKLL = JKD;
JKD1 = repmat(nan,[nc,length(TRIG)]);
JKD2 = repmat(nan,[nc,length(TRIG)]);
JKD3 = repmat(nan,[nc,length(TRIG)]);
JKD4 = repmat(nan,[nc,length(TRIG)]);
JKD5 = repmat(nan,[nc,length(TRIG)]);
JKD6 = repmat(nan,[nc,length(TRIG)]);
JKLD = repmat(nan,[nc,length(TRIG)]);
for l = find(~isnan(cl(:)'));1:length(cl);
c = find(cl(l)==CL);
t = TRIG(l)+T(CC.TI,:);
%t = t(t<=size(D,1));
[tmp,tmpn] = covm(D(t(:),:),'M');
cc = CC.MD;
cc{c} = CC.MD{c}-tmp;
%t = TRIG(l)+(1:nc);
%t = t(t<=size(D,1));
t = TRIG(l)+(min(min(T)):max(max(T)));
d = llbc(cc,D(t,:));
JKLL(:,:,l) = d;
[tmp,LLIX(:,l)] = max(d,[],2);
if length(CL)==2,
JKD3(:,l)=d(:,1);
JKD4(:,l)=d(:,2);
end;
d = mdbc(cc,D(t,:));
JKD(:,:,l) = d;
[tmp,MDIX(:,l)] = min(d,[],2);
if length(CL)==2,
JKD1(:,l) = d(:,1);
JKD2(:,l) = d(:,2);
end;
d = gdbc(cc,D(t,:));
JKGD(:,:,l) = d;
[tmp,GDIX(:,l)] = max(d,[],2);
if length(CL)==2,
JKD5(:,l) = d(:,1);
JKD6(:,l) = d(:,2);
LDA(:,l) = ldbc(cc);
JKLD(:,l) = D(t,:)*LDA(:,l);
end;
end;
if length(CL)==2,
[CC.ldaC0,NN] = covm(LDA','D0');
%CC.ldaC0=CC.ldaC0./NN*min(0,sum(~isnan(CL))-1);
% since NN==min(0,sum(~isnan(CL))-1), no need to rescale
end;
% Concordance matrix with cross-validation
CC.lmx= zeros([size(LLIX,1),length(CL)^2]);
CC.LLH.I0 = zeros([size(LLIX,1),length(CL)]);
CC.LLH.I = zeros([size(LLIX,1),1]);
CC.mmx= zeros([size(MDIX,1),length(CL)^2]);
CC.MD2.I0 = zeros([size(MDIX,1),length(CL)]);
CC.MD2.I = zeros([size(MDIX,1),1]);
tmp = zeros([size(MDIX,1),length(CL)]);
for k = 1:length(CL),
jkd = squeeze(JKGD(:,k,:));
o = bci3eval(jkd(:,cl~=k),jkd(:,cl==k),2);
CC.MD3.TSD{k} = o;
CC.MD3.I0(:,k) = log2(2*var(jkd,[],2)./(var(jkd(:,cl==k),[],2) + var(jkd(:,cl~=k),[],2)))/2;
[sum0,n0,ssq0]=sumskipnan(jkd(:,cl==k),2);
[sum1,n1,ssq1]=sumskipnan(jkd(:,cl~=k),2);
s0 = (ssq0-sum0.*sum0./n0)./(n0-1);
s1 = (ssq1-sum1.*sum1./n1)./(n1-1);
s = (ssq0+ssq1-(sum0+sum1).*(sum0+sum1)./(n0+n1))./(n0+n1-1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -