⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_first-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_FIRST-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	507	 96.02	 95.84	 95.93		o	725	751	720	 95.87	 99.31	 97.56		i-np	691	666	651	 97.75	 94.21	 95.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.55	 96.45	 96.50		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	483	 91.48	 91.30	 91.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.48	 91.30	 91.39		Avg2.	529	528	483	 91.48	 91.30	 91.39	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 50	Log-likelihood                       =        -38.444442	Norm(log-likelihood gradient vector) =          1.977812	Norm(lambda vector)                  =         73.185847	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	507	 96.02	 95.84	 95.93		o	725	751	720	 95.87	 99.31	 97.56		i-np	691	666	651	 97.75	 94.21	 95.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.55	 96.45	 96.50		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	483	 91.48	 91.30	 91.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.48	 91.30	 91.39		Avg2.	529	528	483	 91.48	 91.30	 91.39	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 51	Log-likelihood                       =        -38.260265	Norm(log-likelihood gradient vector) =          1.769992	Norm(lambda vector)                  =         73.162521	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	506	 96.02	 95.65	 95.83		o	725	752	720	 95.74	 99.31	 97.49		i-np	691	666	651	 97.75	 94.21	 95.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.50	 96.39	 96.45		Avg2.	1945	1945	1877	 96.50	 96.50	 96.50	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	483	 91.65	 91.30	 91.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.65	 91.30	 91.48		Avg2.	529	527	483	 91.65	 91.30	 91.48	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 52	Log-likelihood                       =        -37.788205	Norm(log-likelihood gradient vector) =          2.118656	Norm(lambda vector)                  =         72.911185	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	507	 96.20	 95.84	 96.02		o	725	751	720	 95.87	 99.31	 97.56		i-np	691	667	652	 97.75	 94.36	 96.02		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.61	 96.50	 96.56		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	484	 91.84	 91.49	 91.67		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.84	 91.49	 91.67		Avg2.	529	527	484	 91.84	 91.49	 91.67	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 53	Log-likelihood                       =        -37.244368	Norm(log-likelihood gradient vector) =          2.148515	Norm(lambda vector)                  =         72.443583	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	521	501	 96.16	 94.71	 95.43		o	725	750	717	 95.60	 98.90	 97.22		i-np	691	674	652	 96.74	 94.36	 95.53		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.17	 95.99	 96.08		Avg2.	1945	1945	1870	 96.14	 96.14	 96.14	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	521	475	 91.17	 89.79	 90.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.17	 89.79	 90.48		Avg2.	529	521	475	 91.17	 89.79	 90.48	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 54	Log-likelihood                       =        -42.169187	Norm(log-likelihood gradient vector) =         29.356289	Norm(lambda vector)                  =         70.920193	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	506	 96.38	 95.65	 96.02		o	725	753	721	 95.75	 99.45	 97.56		i-np	691	667	652	 97.75	 94.36	 96.02		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.63	 96.49	 96.56		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	482	 91.81	 91.12	 91.46		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.81	 91.12	 91.46		Avg2.	529	525	482	 91.81	 91.12	 91.46	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 55	Log-likelihood                       =        -37.105965	Norm(log-likelihood gradient vector) =          2.965066	Norm(lambda vector)                  =         72.206305	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	505	 96.19	 95.46	 95.83		o	725	752	720	 95.74	 99.31	 97.49		i-np	691	668	652	 97.60	 94.36	 95.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.51	 96.38	 96.44		Avg2.	1945	1945	1877	 96.50	 96.50	 96.50	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	481	 91.62	 90.93	 91.27		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.62	 90.93	 91.27		Avg2.	529	525	481	 91.62	 90.93	 91.27	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 56	Log-likelihood                       =        -36.797557	Norm(log-likelihood gradient vector) =          1.816416	Norm(lambda vector)                  =         71.645192	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	506	 96.38	 95.65	 96.02		o	725	751	720	 95.87	 99.31	 97.56		i-np	691	669	653	 97.61	 94.50	 96.03		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.62	 96.49	 96.55		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	482	 91.81	 91.12	 91.46		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.81	 91.12	 91.46		Avg2.	529	525	482	 91.81	 91.12	 91.46	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 57	Log-likelihood                       =        -36.563681	Norm(log-likelihood gradient vector) =          1.266725	Norm(lambda vector)                  =         71.443987	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	524	505	 96.37	 95.46	 95.92		o	725	752	720	 95.74	 99.31	 97.49		i-np	691	669	653	 97.61	 94.50	 96.03		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.42	 96.50		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	524	481	 91.79	 90.93	 91.36		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.79	 90.93	 91.36		Avg2.	529	524	481	 91.79	 90.93	 91.36	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 58	Log-likelihood                       =        -36.278542	Norm(log-likelihood gradient vector) =          1.686888	Norm(lambda vector)                  =         71.216319	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	524	505	 96.37	 95.46	 95.92		o	725	752	720	 95.74	 99.31	 97.49		i-np	691	669	653	 97.61	 94.50	 96.03		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.42	 96.50		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	524	481	 91.79	 90.93	 91.36		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.79	 90.93	 91.36		Avg2.	529	524	481	 91.79	 90.93	 91.36	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 59	Log-likelihood                       =        -36.113565	Norm(log-likelihood gradient vector) =          1.879319	Norm(lambda vector)                  =         71.158713	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	506	 96.38	 95.65	 96.02		o	725	752	720	 95.74	 99.31	 97.49		i-np	691	668	653	 97.75	 94.50	 96.10		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.63	 96.49	 96.56		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	483	 92.00	 91.30	 91.65		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.00	 91.30	 91.65		Avg2.	529	525	483	 92.00	 91.30	 91.65	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 60	Log-likelihood                       =        -35.882781	Norm(log-likelihood gradient vector) =          1.321788	Norm(lambda vector)                  =         71.168036	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	505	 96.19	 95.46	 95.83		o	725	753	720	 95.62	 99.31	 97.43		i-np	691	667	652	 97.75	 94.36	 96.02		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.52	 96.38	 96.45		Avg2.	1945	1945	1877	 96.50	 96.50	 96.50	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	482	 91.81	 91.12	 91.46		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.81	 91.12	 91.46		Avg2.	529	525	482	 91.81	 91.12	 91.46	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsThe training process elapsed: 102 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	531	510	 96.05	 96.41	 96.23		o	725	755	721	 95.50	 99.45	 97.43		i-np	691	659	648	 98.33	 93.78	 96.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.62	 96.54	 96.58		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based perfor

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -