⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_first-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_FIRST-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 37	Log-likelihood                       =        -48.452183	Norm(log-likelihood gradient vector) =          4.542221	Norm(lambda vector)                  =         81.014945	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	504	 95.64	 95.27	 95.45		o	725	748	716	 95.72	 98.76	 97.22		i-np	691	670	648	 96.72	 93.78	 95.22		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.02	 95.94	 95.98		Avg2.	1945	1945	1868	 96.04	 96.04	 96.04	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	477	 90.51	 90.17	 90.34		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.51	 90.17	 90.34		Avg2.	529	527	477	 90.51	 90.17	 90.34	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 38	Log-likelihood                       =        -48.713755	Norm(log-likelihood gradient vector) =         13.168265	Norm(lambda vector)                  =         81.462937	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	504	 95.82	 95.27	 95.55		o	725	747	716	 95.85	 98.76	 97.28		i-np	691	672	650	 96.73	 94.07	 95.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.13	 96.03	 96.08		Avg2.	1945	1945	1870	 96.14	 96.14	 96.14	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	478	 90.87	 90.36	 90.62		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.87	 90.36	 90.62		Avg2.	529	526	478	 90.87	 90.36	 90.62	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 39	Log-likelihood                       =        -47.304424	Norm(log-likelihood gradient vector) =          6.223975	Norm(lambda vector)                  =         81.203148	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	505	 95.83	 95.46	 95.64		o	725	747	716	 95.85	 98.76	 97.28		i-np	691	671	650	 96.87	 94.07	 95.45		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.18	 96.10	 96.14		Avg2.	1945	1945	1871	 96.20	 96.20	 96.20	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	479	 90.89	 90.55	 90.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.89	 90.55	 90.72		Avg2.	529	527	479	 90.89	 90.55	 90.72	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 40	Log-likelihood                       =        -45.938296	Norm(log-likelihood gradient vector) =          6.086881	Norm(lambda vector)                  =         79.984784	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	505	 95.83	 95.46	 95.64		o	725	748	716	 95.72	 98.76	 97.22		i-np	691	670	650	 97.01	 94.07	 95.52		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.19	 96.10	 96.14		Avg2.	1945	1945	1871	 96.20	 96.20	 96.20	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	480	 91.08	 90.74	 90.91		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.08	 90.74	 90.91		Avg2.	529	527	480	 91.08	 90.74	 90.91	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 41	Log-likelihood                       =        -44.866614	Norm(log-likelihood gradient vector) =          2.881313	Norm(lambda vector)                  =         80.073707	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	507	 95.84	 95.84	 95.84		o	725	750	718	 95.73	 99.03	 97.36		i-np	691	666	650	 97.60	 94.07	 95.80		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.39	 96.31	 96.35		Avg2.	1945	1945	1875	 96.40	 96.40	 96.40	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	484	 91.49	 91.49	 91.49		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.49	 91.49	 91.49		Avg2.	529	529	484	 91.49	 91.49	 91.49	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 42	Log-likelihood                       =        -44.306156	Norm(log-likelihood gradient vector) =          2.385597	Norm(lambda vector)                  =         80.390625	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	506	 95.83	 95.65	 95.74		o	725	751	718	 95.61	 99.03	 97.29		i-np	691	666	650	 97.60	 94.07	 95.80		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.35	 96.25	 96.30		Avg2.	1945	1945	1874	 96.35	 96.35	 96.35	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	483	 91.48	 91.30	 91.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.48	 91.30	 91.39		Avg2.	529	528	483	 91.48	 91.30	 91.39	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 43	Log-likelihood                       =        -43.256016	Norm(log-likelihood gradient vector) =          4.932125	Norm(lambda vector)                  =         79.072884	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	507	 96.02	 95.84	 95.93		o	725	750	718	 95.73	 99.03	 97.36		i-np	691	667	651	 97.60	 94.21	 95.88		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.45	 96.36	 96.41		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	484	 91.67	 91.49	 91.58		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.67	 91.49	 91.58		Avg2.	529	528	484	 91.67	 91.49	 91.58	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 44	Log-likelihood                       =        -42.478084	Norm(log-likelihood gradient vector) =          4.465583	Norm(lambda vector)                  =         78.052156	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	508	 96.03	 96.03	 96.03		o	725	750	719	 95.87	 99.17	 97.49		i-np	691	666	651	 97.75	 94.21	 95.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.55	 96.47	 96.51		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	486	 91.87	 91.87	 91.87		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.87	 91.87	 91.87		Avg2.	529	529	486	 91.87	 91.87	 91.87	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 45	Log-likelihood                       =        -41.763273	Norm(log-likelihood gradient vector) =          2.615761	Norm(lambda vector)                  =         77.633419	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	506	 95.83	 95.65	 95.74		o	725	750	718	 95.73	 99.03	 97.36		i-np	691	667	650	 97.45	 94.07	 95.73		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.34	 96.25	 96.30		Avg2.	1945	1945	1874	 96.35	 96.35	 96.35	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	483	 91.48	 91.30	 91.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.48	 91.30	 91.39		Avg2.	529	528	483	 91.48	 91.30	 91.39	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 46	Log-likelihood                       =        -41.026387	Norm(log-likelihood gradient vector) =          2.275486	Norm(lambda vector)                  =         76.554756	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	506	 95.83	 95.65	 95.74		o	725	750	718	 95.73	 99.03	 97.36		i-np	691	667	650	 97.45	 94.07	 95.73		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.34	 96.25	 96.30		Avg2.	1945	1945	1874	 96.35	 96.35	 96.35	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	483	 91.48	 91.30	 91.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.48	 91.30	 91.39		Avg2.	529	528	483	 91.48	 91.30	 91.39	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 47	Log-likelihood                       =        -40.331006	Norm(log-likelihood gradient vector) =          2.024350	Norm(lambda vector)                  =         75.483616	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	505	 96.01	 95.46	 95.73		o	725	749	718	 95.86	 99.03	 97.42		i-np	691	670	651	 97.16	 94.21	 95.66		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.34	 96.24	 96.29		Avg2.	1945	1945	1874	 96.35	 96.35	 96.35	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	481	 91.44	 90.93	 91.18		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.44	 90.93	 91.18		Avg2.	529	526	481	 91.44	 90.93	 91.18	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 48	Log-likelihood                       =        -39.439629	Norm(log-likelihood gradient vector) =          3.960332	Norm(lambda vector)                  =         73.540712	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	507	 96.02	 95.84	 95.93		o	725	751	720	 95.87	 99.31	 97.56		i-np	691	666	651	 97.75	 94.21	 95.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.55	 96.45	 96.50		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	483	 91.48	 91.30	 91.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.48	 91.30	 91.39		Avg2.	529	528	483	 91.48	 91.30	 91.39	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 49	Log-likelihood                       =        -38.894157	Norm(log-likelihood gradient vector) =          5.528328	Norm(lambda vector)                  =         72.833133	Iteration elapsed: 2 seconds	Label-based performance evaluation:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -