⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_first-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_FIRST-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	484	 90.13	 91.49	 90.81		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.13	 91.49	 90.81		Avg2.	529	537	484	 90.13	 91.49	 90.81	Current max chunk-based F1:  91.46 (iteration 23)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 25	Log-likelihood                       =       -103.559386	Norm(log-likelihood gradient vector) =         90.394022	Norm(lambda vector)                  =         73.102653	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	531	510	 96.05	 96.41	 96.23		o	725	755	721	 95.50	 99.45	 97.43		i-np	691	659	648	 98.33	 93.78	 96.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.62	 96.54	 96.58		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	531	487	 91.71	 92.06	 91.89		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.71	 92.06	 91.89		Avg2.	529	531	487	 91.71	 92.06	 91.89	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 26	Log-likelihood                       =        -91.745125	Norm(log-likelihood gradient vector) =         44.626039	Norm(lambda vector)                  =         68.802469	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	531	509	 95.86	 96.22	 96.04		o	725	754	720	 95.49	 99.31	 97.36		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.51	 96.44	 96.47		Avg2.	1945	1945	1877	 96.50	 96.50	 96.50	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	531	486	 91.53	 91.87	 91.70		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.53	 91.87	 91.70		Avg2.	529	531	486	 91.53	 91.87	 91.70	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 27	Log-likelihood                       =        -79.447151	Norm(log-likelihood gradient vector) =         22.889661	Norm(lambda vector)                  =         72.495937	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	507	 95.84	 95.84	 95.84		o	725	754	720	 95.49	 99.31	 97.36		i-np	691	662	649	 98.04	 93.92	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.36	 96.41		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	483	 91.30	 91.30	 91.30		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.30	 91.30	 91.30		Avg2.	529	529	483	 91.30	 91.30	 91.30	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 28	Log-likelihood                       =        -71.829787	Norm(log-likelihood gradient vector) =         13.430452	Norm(lambda vector)                  =         76.062152	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	506	 96.20	 95.65	 95.92		o	725	751	718	 95.61	 99.03	 97.29		i-np	691	668	651	 97.46	 94.21	 95.81		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.42	 96.30	 96.36		Avg2.	1945	1945	1875	 96.40	 96.40	 96.40	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	481	 91.44	 90.93	 91.18		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.44	 90.93	 91.18		Avg2.	529	526	481	 91.44	 90.93	 91.18	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 29	Log-likelihood                       =        -65.393911	Norm(log-likelihood gradient vector) =          9.980292	Norm(lambda vector)                  =         80.276019	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	506	 96.20	 95.65	 95.92		o	725	751	718	 95.61	 99.03	 97.29		i-np	691	668	651	 97.46	 94.21	 95.81		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.42	 96.30	 96.36		Avg2.	1945	1945	1875	 96.40	 96.40	 96.40	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	481	 91.44	 90.93	 91.18		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.44	 90.93	 91.18		Avg2.	529	526	481	 91.44	 90.93	 91.18	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 30	Log-likelihood                       =        -61.507250	Norm(log-likelihood gradient vector) =          8.472733	Norm(lambda vector)                  =         82.998040	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	524	504	 96.18	 95.27	 95.73		o	725	749	716	 95.59	 98.76	 97.15		i-np	691	672	651	 96.88	 94.21	 95.52		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.22	 96.08	 96.15		Avg2.	1945	1945	1871	 96.20	 96.20	 96.20	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	524	477	 91.03	 90.17	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.03	 90.17	 90.60		Avg2.	529	524	477	 91.03	 90.17	 90.60	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 31	Log-likelihood                       =        -58.286402	Norm(log-likelihood gradient vector) =          6.376564	Norm(lambda vector)                  =         85.419719	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	523	502	 95.98	 94.90	 95.44		o	725	748	714	 95.45	 98.48	 96.95		i-np	691	674	649	 96.29	 93.92	 95.09		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.91	 95.77	 95.84		Avg2.	1945	1945	1865	 95.89	 95.89	 95.89	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	523	474	 90.63	 89.60	 90.11		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.63	 89.60	 90.11		Avg2.	529	523	474	 90.63	 89.60	 90.11	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 32	Log-likelihood                       =        -59.919344	Norm(log-likelihood gradient vector) =         36.591886	Norm(lambda vector)                  =         85.985538	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	523	504	 96.37	 95.27	 95.82		o	725	751	717	 95.47	 98.90	 97.15		i-np	691	671	651	 97.02	 94.21	 95.59		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.29	 96.13	 96.21		Avg2.	1945	1945	1872	 96.25	 96.25	 96.25	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	523	477	 91.20	 90.17	 90.68		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.20	 90.17	 90.68		Avg2.	529	523	477	 91.20	 90.17	 90.68	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 33	Log-likelihood                       =        -56.190608	Norm(log-likelihood gradient vector) =         14.192247	Norm(lambda vector)                  =         85.651501	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	506	 96.20	 95.65	 95.92		o	725	750	717	 95.60	 98.90	 97.22		i-np	691	669	650	 97.16	 94.07	 95.59		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.32	 96.21	 96.26		Avg2.	1945	1945	1873	 96.30	 96.30	 96.30	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	480	 91.25	 90.74	 91.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.25	 90.74	 91.00		Avg2.	529	526	480	 91.25	 90.74	 91.00	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 34	Log-likelihood                       =        -53.788104	Norm(log-likelihood gradient vector) =          4.923837	Norm(lambda vector)                  =         86.108976	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	506	 96.02	 95.65	 95.83		o	725	750	717	 95.60	 98.90	 97.22		i-np	691	668	649	 97.16	 93.92	 95.51		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.26	 96.16	 96.21		Avg2.	1945	1945	1872	 96.25	 96.25	 96.25	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	480	 91.08	 90.74	 90.91		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.08	 90.74	 90.91		Avg2.	529	527	480	 91.08	 90.74	 90.91	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 35	Log-likelihood                       =        -52.845123	Norm(log-likelihood gradient vector) =          4.296133	Norm(lambda vector)                  =         85.034060	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	504	 96.00	 95.27	 95.64		o	725	749	717	 95.73	 98.90	 97.29		i-np	691	671	650	 96.87	 94.07	 95.45		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.20	 96.08	 96.14		Avg2.	1945	1945	1871	 96.20	 96.20	 96.20	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	478	 91.05	 90.36	 90.70		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.05	 90.36	 90.70		Avg2.	529	525	478	 91.05	 90.36	 90.70	Current max chunk-based F1:  91.89 (iteration 25)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 36	Log-likelihood                       =        -50.905266	Norm(log-likelihood gradient vector) =          4.179070	Norm(lambda vector)                  =         83.328466	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	504	 95.82	 95.27	 95.55		o	725	747	716	 95.85	 98.76	 97.28		i-np	691	672	650	 96.73	 94.07	 95.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.13	 96.03	 96.08		Avg2.	1945	1945	1870	 96.14	 96.14	 96.14	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	478	 90.87	 90.36	 90.62		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.87	 90.36	 90.62		Avg2.	529	526	478	 90.87	 90.36	 90.62

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -