⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_first-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_FIRST-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
		-----	------	-----	-----	-------	-------	-------------		b-np	529	522	504	 96.55	 95.27	 95.91		o	725	747	719	 96.25	 99.17	 97.69		i-np	691	676	656	 97.04	 94.93	 95.98		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.61	 96.46	 96.54		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	522	474	 90.80	 89.60	 90.20		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.80	 89.60	 90.20		Avg2.	529	522	474	 90.80	 89.60	 90.20	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 13	Log-likelihood                       =       -524.271758	Norm(log-likelihood gradient vector) =         85.863864	Norm(lambda vector)                  =         33.640256	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	522	501	 95.98	 94.71	 95.34		o	725	749	718	 95.86	 99.03	 97.42		i-np	691	674	653	 96.88	 94.50	 95.68		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.24	 96.08	 96.16		Avg2.	1945	1945	1872	 96.25	 96.25	 96.25	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	522	472	 90.42	 89.22	 89.82		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.42	 89.22	 89.82		Avg2.	529	522	472	 90.42	 89.22	 89.82	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 14	Log-likelihood                       =       -468.573906	Norm(log-likelihood gradient vector) =         84.256056	Norm(lambda vector)                  =         35.416702	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	517	499	 96.52	 94.33	 95.41		o	725	739	714	 96.62	 98.48	 97.54		i-np	691	689	658	 95.50	 95.22	 95.36		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.21	 96.01	 96.11		Avg2.	1945	1945	1871	 96.20	 96.20	 96.20	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	517	467	 90.33	 88.28	 89.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.33	 88.28	 89.29		Avg2.	529	517	467	 90.33	 88.28	 89.29	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 15	Log-likelihood                       =       -381.496879	Norm(log-likelihood gradient vector) =        159.889744	Norm(lambda vector)                  =         40.186470	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	498	 94.14	 94.14	 94.14		o	725	761	719	 94.48	 99.17	 96.77		i-np	691	655	638	 97.40	 92.33	 94.80		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.34	 95.21	 95.28		Avg2.	1945	1945	1855	 95.37	 95.37	 95.37	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	471	 89.04	 89.04	 89.04		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.04	 89.04	 89.04		Avg2.	529	529	471	 89.04	 89.04	 89.04	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 16	Log-likelihood                       =       -331.494469	Norm(log-likelihood gradient vector) =        123.847229	Norm(lambda vector)                  =         44.152125	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	502	 95.26	 94.90	 95.08		o	725	754	719	 95.36	 99.17	 97.23		i-np	691	664	646	 97.29	 93.49	 95.35		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.97	 95.85	 95.91		Avg2.	1945	1945	1867	 95.99	 95.99	 95.99	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	475	 90.13	 89.79	 89.96		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.13	 89.79	 89.96		Avg2.	529	527	475	 90.13	 89.79	 89.96	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 17	Log-likelihood                       =       -296.018906	Norm(log-likelihood gradient vector) =         73.589532	Norm(lambda vector)                  =         43.793367	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	501	 95.25	 94.71	 94.98		o	725	751	716	 95.34	 98.76	 97.02		i-np	691	668	646	 96.71	 93.49	 95.07		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.76	 95.65	 95.71		Avg2.	1945	1945	1863	 95.78	 95.78	 95.78	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	472	 89.73	 89.22	 89.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.73	 89.22	 89.48		Avg2.	529	526	472	 89.73	 89.22	 89.48	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 18	Log-likelihood                       =       -250.904825	Norm(log-likelihood gradient vector) =         47.837607	Norm(lambda vector)                  =         45.524808	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	504	 95.82	 95.27	 95.55		o	725	750	717	 95.60	 98.90	 97.22		i-np	691	669	648	 96.86	 93.78	 95.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.09	 95.98	 96.04		Avg2.	1945	1945	1869	 96.09	 96.09	 96.09	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	475	 90.30	 89.79	 90.05		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.30	 89.79	 90.05		Avg2.	529	526	475	 90.30	 89.79	 90.05	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 19	Log-likelihood                       =       -209.967747	Norm(log-likelihood gradient vector) =         44.740460	Norm(lambda vector)                  =         48.899654	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	521	502	 96.35	 94.90	 95.62		o	725	752	716	 95.21	 98.76	 96.95		i-np	691	672	651	 96.88	 94.21	 95.52		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.15	 95.96	 96.05		Avg2.	1945	1945	1869	 96.09	 96.09	 96.09	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	521	476	 91.36	 89.98	 90.67		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.36	 89.98	 90.67		Avg2.	529	521	476	 91.36	 89.98	 90.67	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 20	Log-likelihood                       =       -194.998161	Norm(log-likelihood gradient vector) =        131.106178	Norm(lambda vector)                  =         55.938246	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	505	 96.01	 95.46	 95.73		o	725	756	720	 95.24	 99.31	 97.23		i-np	691	663	648	 97.74	 93.78	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.33	 96.18	 96.26		Avg2.	1945	1945	1873	 96.30	 96.30	 96.30	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	478	 90.87	 90.36	 90.62		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.87	 90.36	 90.62		Avg2.	529	526	478	 90.87	 90.36	 90.62	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 21	Log-likelihood                       =       -150.581933	Norm(log-likelihood gradient vector) =         35.885017	Norm(lambda vector)                  =         57.389940	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	506	 96.02	 95.65	 95.83		o	725	755	720	 95.36	 99.31	 97.30		i-np	691	663	648	 97.74	 93.78	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.37	 96.25	 96.31		Avg2.	1945	1945	1874	 96.35	 96.35	 96.35	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	480	 91.08	 90.74	 90.91		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.08	 90.74	 90.91		Avg2.	529	527	480	 91.08	 90.74	 90.91	Current max chunk-based F1:  90.91 (iteration 21)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 22	Log-likelihood                       =       -140.225225	Norm(log-likelihood gradient vector) =         26.125514	Norm(lambda vector)                  =         58.389717	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	506	 96.02	 95.65	 95.83		o	725	754	720	 95.49	 99.31	 97.36		i-np	691	664	649	 97.74	 93.92	 95.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.42	 96.29	 96.36		Avg2.	1945	1945	1875	 96.40	 96.40	 96.40	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	482	 91.46	 91.12	 91.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.46	 91.12	 91.29		Avg2.	529	527	482	 91.46	 91.12	 91.29	Current max chunk-based F1:  91.29 (iteration 22)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 23	Log-likelihood                       =       -120.704597	Norm(log-likelihood gradient vector) =         27.785201	Norm(lambda vector)                  =         61.122523	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	505	 96.19	 95.46	 95.83		o	725	755	720	 95.36	 99.31	 97.30		i-np	691	665	650	 97.74	 94.07	 95.87		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.43	 96.28	 96.36		Avg2.	1945	1945	1875	 96.40	 96.40	 96.40	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	482	 91.81	 91.12	 91.46		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.81	 91.12	 91.46		Avg2.	529	525	482	 91.81	 91.12	 91.46	Current max chunk-based F1:  91.46 (iteration 23)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 24	Log-likelihood                       =       -100.218394	Norm(log-likelihood gradient vector) =         23.887901	Norm(lambda vector)                  =         65.490397	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	510	 94.97	 96.41	 95.68		o	725	761	722	 94.88	 99.59	 97.17		i-np	691	647	638	 98.61	 92.33	 95.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.15	 96.11	 96.13		Avg2.	1945	1945	1870	 96.14	 96.14	 96.14	Chunk-based performance evaluation:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -