⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_first-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_FIRST-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
OPTION VALUES:Model directory: ./Training data file: train.taggedTesting data file: test.taggedUnlabeled data file: data.untaggedLabel representation: IOB2Model file: model.txtTraining log file (this one): trainlog.txtFirst-order Markov CRFsNumber of labels: 3Number of training sequences: 412Number of testing sequences: 86Number of unlabeled sequences: 0Number of context predicates: 17487Number of features: 20375Feature rare threshold: 1Context predicate rare threshold: 1Using multiple rare thresholds for features: 0Highlight feature: 0Number of training iterations: 60Initial lambda value:     0.0000Sigma square (for smoothing):   100.0000Epsilon for L-BFGS convergence:   0.000100Number of approximated hessian matrixes: 7Start to train ...Iteration: 1	Log-likelihood                       =     -10556.565482	Norm(log-likelihood gradient vector) =       3704.072407	Norm(lambda vector)                  =          0.000000	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	444	362	 81.53	 68.43	 74.41		o	725	923	689	 74.65	 95.03	 83.62		i-np	691	578	505	 87.37	 73.08	 79.59		-----	------	-----	-----	-------	-------	-------------		Avg1.				 81.18	 78.85	 80.00		Avg2.	1945	1945	1556	 80.00	 80.00	 80.00	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	444	279	 62.84	 52.74	 57.35		-----	------	-----	-----	-------	-------	-------------		Avg1.				 62.84	 52.74	 57.35		Avg2.	529	444	279	 62.84	 52.74	 57.35	Current max chunk-based F1:  57.35 (iteration 1)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 2	Log-likelihood                       =      -7481.017477	Norm(log-likelihood gradient vector) =       2489.172777	Norm(lambda vector)                  =          1.000000	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	421	 79.58	 79.58	 79.58		o	725	689	610	 88.53	 84.14	 86.28		i-np	691	727	591	 81.29	 85.53	 83.36		-----	------	-----	-----	-------	-------	-------------		Avg1.				 83.14	 83.08	 83.11		Avg2.	1945	1945	1622	 83.39	 83.39	 83.39	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	328	 62.00	 62.00	 62.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 62.00	 62.00	 62.00		Avg2.	529	529	328	 62.00	 62.00	 62.00	Current max chunk-based F1:  62.00 (iteration 2)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 3	Log-likelihood                       =      -3993.656395	Norm(log-likelihood gradient vector) =       1366.205829	Norm(lambda vector)                  =          3.639198	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	432	397	 91.90	 75.05	 82.62		o	725	882	714	 80.95	 98.48	 88.86		i-np	691	631	586	 92.87	 84.80	 88.65		-----	------	-----	-----	-------	-------	-------------		Avg1.				 88.57	 86.11	 87.32		Avg2.	1945	1945	1697	 87.25	 87.25	 87.25	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	432	338	 78.24	 63.89	 70.34		-----	------	-----	-----	-------	-------	-------------		Avg1.				 78.24	 63.89	 70.34		Avg2.	529	432	338	 78.24	 63.89	 70.34	Current max chunk-based F1:  70.34 (iteration 3)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 4	Log-likelihood                       =      -2887.436054	Norm(log-likelihood gradient vector) =       1091.963943	Norm(lambda vector)                  =          5.146294	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	459	427	 93.03	 80.72	 86.44		o	725	811	709	 87.42	 97.79	 92.32		i-np	691	675	621	 92.00	 89.87	 90.92		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.82	 89.46	 90.13		Avg2.	1945	1945	1757	 90.33	 90.33	 90.33	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	459	367	 79.96	 69.38	 74.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 79.96	 69.38	 74.29		Avg2.	529	459	367	 79.96	 69.38	 74.29	Current max chunk-based F1:  74.29 (iteration 4)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 5	Log-likelihood                       =      -2412.831742	Norm(log-likelihood gradient vector) =        638.899561	Norm(lambda vector)                  =          6.192059	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	522	486	 93.10	 91.87	 92.48		o	725	765	712	 93.07	 98.21	 95.57		i-np	691	658	632	 96.05	 91.46	 93.70		-----	------	-----	-----	-------	-------	-------------		Avg1.				 94.07	 93.85	 93.96		Avg2.	1945	1945	1830	 94.09	 94.09	 94.09	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	522	447	 85.63	 84.50	 85.06		-----	------	-----	-----	-------	-------	-------------		Avg1.				 85.63	 84.50	 85.06		Avg2.	529	522	447	 85.63	 84.50	 85.06	Current max chunk-based F1:  85.06 (iteration 5)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 6	Log-likelihood                       =      -1849.524795	Norm(log-likelihood gradient vector) =        380.557928	Norm(lambda vector)                  =          8.771722	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	483	464	 96.07	 87.71	 91.70		o	725	754	703	 93.24	 96.97	 95.06		i-np	691	708	657	 92.80	 95.08	 93.92		-----	------	-----	-----	-------	-------	-------------		Avg1.				 94.03	 93.25	 93.64		Avg2.	1945	1945	1824	 93.78	 93.78	 93.78	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	483	425	 87.99	 80.34	 83.99		-----	------	-----	-----	-------	-------	-------------		Avg1.				 87.99	 80.34	 83.99		Avg2.	529	483	425	 87.99	 80.34	 83.99	Current max chunk-based F1:  85.06 (iteration 5)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 7	Log-likelihood                       =      -1700.516200	Norm(log-likelihood gradient vector) =        572.568532	Norm(lambda vector)                  =         12.267256	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	522	498	 95.40	 94.14	 94.77		o	725	756	716	 94.71	 98.76	 96.69		i-np	691	667	645	 96.70	 93.34	 94.99		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.60	 95.41	 95.51		Avg2.	1945	1945	1859	 95.58	 95.58	 95.58	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	522	465	 89.08	 87.90	 88.49		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.08	 87.90	 88.49		Avg2.	529	522	465	 89.08	 87.90	 88.49	Current max chunk-based F1:  88.49 (iteration 7)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 8	Log-likelihood                       =      -1359.536303	Norm(log-likelihood gradient vector) =        198.620212	Norm(lambda vector)                  =         14.885930	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	505	 95.46	 95.46	 95.46		o	725	757	719	 94.98	 99.17	 97.03		i-np	691	659	644	 97.72	 93.20	 95.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.06	 95.94	 96.00		Avg2.	1945	1945	1868	 96.04	 96.04	 96.04	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	473	 89.41	 89.41	 89.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.41	 89.41	 89.41		Avg2.	529	529	473	 89.41	 89.41	 89.41	Current max chunk-based F1:  89.41 (iteration 8)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 9	Log-likelihood                       =      -1243.393080	Norm(log-likelihood gradient vector) =        160.689764	Norm(lambda vector)                  =         17.131725	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	507	 96.57	 95.84	 96.20		o	725	754	722	 95.76	 99.59	 97.63		i-np	691	666	652	 97.90	 94.36	 96.09		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.74	 96.59	 96.67		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	478	 91.05	 90.36	 90.70		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.05	 90.36	 90.70		Avg2.	529	525	478	 91.05	 90.36	 90.70	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 10	Log-likelihood                       =      -1058.962867	Norm(log-likelihood gradient vector) =        125.854939	Norm(lambda vector)                  =         20.572535	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	520	502	 96.54	 94.90	 95.71		o	725	743	715	 96.23	 98.62	 97.41		i-np	691	682	655	 96.04	 94.79	 95.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.27	 96.10	 96.19		Avg2.	1945	1945	1872	 96.25	 96.25	 96.25	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	520	470	 90.38	 88.85	 89.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.38	 88.85	 89.61		Avg2.	529	520	470	 90.38	 88.85	 89.61	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 11	Log-likelihood                       =       -799.153829	Norm(log-likelihood gradient vector) =        193.296906	Norm(lambda vector)                  =         25.431154	Iteration elapsed: 1 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	503	 95.81	 95.09	 95.45		o	725	751	717	 95.47	 98.90	 97.15		i-np	691	669	646	 96.56	 93.49	 95.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.95	 95.82	 95.89		Avg2.	1945	1945	1866	 95.94	 95.94	 95.94	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	468	 89.14	 88.47	 88.80		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.14	 88.47	 88.80		Avg2.	529	525	468	 89.14	 88.47	 88.80	Current max chunk-based F1:  90.70 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 1 secondsIteration: 12	Log-likelihood                       =       -614.403785	Norm(log-likelihood gradient vector) =        142.554404	Norm(lambda vector)                  =         31.354324	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -