⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_second-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_SECOND-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	663	649	 97.89	 93.92	 95.86		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.56	 96.61	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	484	 90.13	 91.49	 90.81		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.13	 91.49	 90.81		Avg2.	529	537	484	 90.13	 91.49	 90.81	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 50	Log-likelihood                       =       -347.581212	Norm(log-likelihood gradient vector) =         85.017965	Norm(lambda vector)                  =         95.259193	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	510	 95.15	 96.41	 95.77		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	664	649	 97.74	 93.92	 95.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.51	 96.55	 96.53		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	484	 90.30	 91.49	 90.89		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.30	 91.49	 90.89		Avg2.	529	536	484	 90.30	 91.49	 90.89	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 51	Log-likelihood                       =       -340.266358	Norm(log-likelihood gradient vector) =         42.425079	Norm(lambda vector)                  =         94.641463	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	665	649	 97.59	 93.92	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	482	 90.09	 91.12	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.09	 91.12	 90.60		Avg2.	529	535	482	 90.09	 91.12	 90.60	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 52	Log-likelihood                       =       -332.147850	Norm(log-likelihood gradient vector) =         17.862587	Norm(lambda vector)                  =         95.903938	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	665	649	 97.59	 93.92	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	482	 90.09	 91.12	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.09	 91.12	 90.60		Avg2.	529	535	482	 90.09	 91.12	 90.60	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 53	Log-likelihood                       =       -328.116509	Norm(log-likelihood gradient vector) =         23.584057	Norm(lambda vector)                  =         97.001603	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	746	720	 96.51	 99.31	 97.89		i-np	691	664	649	 97.74	 93.92	 95.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.47	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	483	 90.28	 91.30	 90.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.28	 91.30	 90.79		Avg2.	529	535	483	 90.28	 91.30	 90.79	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 54	Log-likelihood                       =       -325.968180	Norm(log-likelihood gradient vector) =         26.475884	Norm(lambda vector)                  =         98.194726	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	665	649	 97.59	 93.92	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	482	 90.09	 91.12	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.09	 91.12	 90.60		Avg2.	529	535	482	 90.09	 91.12	 90.60	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 4 secondsIteration: 55	Log-likelihood                       =       -324.724076	Norm(log-likelihood gradient vector) =         25.924644	Norm(lambda vector)                  =        100.169912	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	538	509	 94.61	 96.22	 95.41		o	725	746	721	 96.65	 99.45	 98.03		i-np	691	661	645	 97.58	 93.34	 95.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.28	 96.34	 96.31		Avg2.	1945	1945	1875	 96.40	 96.40	 96.40	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	538	479	 89.03	 90.55	 89.78		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.03	 90.55	 89.78		Avg2.	529	538	479	 89.03	 90.55	 89.78	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 56	Log-likelihood                       =       -337.228861	Norm(log-likelihood gradient vector) =         35.812257	Norm(lambda vector)                  =        102.519572	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	508	 94.95	 96.03	 95.49		o	725	744	719	 96.64	 99.17	 97.89		i-np	691	666	649	 97.45	 93.92	 95.65		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.35	 96.37	 96.36		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	481	 89.91	 90.93	 90.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.91	 90.93	 90.41		Avg2.	529	535	481	 89.91	 90.93	 90.41	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 57	Log-likelihood                       =       -325.106948	Norm(log-likelihood gradient vector) =         22.043467	Norm(lambda vector)                  =        100.534948	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	508	 94.95	 96.03	 95.49		o	725	744	719	 96.64	 99.17	 97.89		i-np	691	666	649	 97.45	 93.92	 95.65		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.35	 96.37	 96.36		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	481	 89.91	 90.93	 90.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.91	 90.93	 90.41		Avg2.	529	535	481	 89.91	 90.93	 90.41	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 58	Log-likelihood                       =       -324.752047	Norm(log-likelihood gradient vector) =         25.052547	Norm(lambda vector)                  =        100.240553	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	665	649	 97.59	 93.92	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	482	 90.09	 91.12	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.09	 91.12	 90.60		Avg2.	529	535	482	 90.09	 91.12	 90.60	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 59	Log-likelihood                       =       -324.727915	Norm(log-likelihood gradient vector) =         25.744913	Norm(lambda vector)                  =        100.184140	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	665	649	 97.59	 93.92	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	482	 90.09	 91.12	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.09	 91.12	 90.60		Avg2.	529	535	482	 90.09	 91.12	 90.60	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 60	Log-likelihood                       =       -324.724782	Norm(log-likelihood gradient vector) =         25.887993	Norm(lambda vector)                  =        100.172801	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	509	 95.14	 96.22	 95.68		o	725	745	720	 96.64	 99.31	 97.96		i-np	691	665	649	 97.59	 93.92	 95.72		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	482	 90.09	 91.12	 90.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.09	 91.12	 90.60		Avg2.	529	535	482	 90.09	 91.12	 90.60	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsThe training process elapsed: 185 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	514	 96.25	 97.16	 96.71		o	725	747	722	 96.65	 99.59	 98.10		i-np	691	664	654	 98.49	 94.65	 96.53		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.13	 97.13	 97.13		Avg2.	1945	1945	1890	 97.17	 97.17	 97.17	Chunk-bas

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -