⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_second-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_SECOND-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 37	Log-likelihood                       =       -604.858986	Norm(log-likelihood gradient vector) =         43.884980	Norm(lambda vector)                  =         75.023551	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	513	 95.89	 96.98	 96.43		o	725	752	724	 96.28	 99.86	 98.04		i-np	691	658	649	 98.63	 93.92	 96.22		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.92	 96.93		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	491	 91.78	 92.82	 92.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.78	 92.82	 92.29		Avg2.	529	535	491	 91.78	 92.82	 92.29	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 38	Log-likelihood                       =       -570.632265	Norm(log-likelihood gradient vector) =        100.070121	Norm(lambda vector)                  =         77.750232	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	513	 95.89	 96.98	 96.43		o	725	750	724	 96.53	 99.86	 98.17		i-np	691	660	651	 98.64	 94.21	 96.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.02	 97.02	 97.02		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	491	 91.78	 92.82	 92.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.78	 92.82	 92.29		Avg2.	529	535	491	 91.78	 92.82	 92.29	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 39	Log-likelihood                       =       -534.737334	Norm(log-likelihood gradient vector) =         50.459825	Norm(lambda vector)                  =         80.568114	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	749	723	 96.53	 99.72	 98.10		i-np	691	662	651	 98.34	 94.21	 96.23		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.92	 96.91	 96.91		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	489	 91.57	 92.44	 92.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.57	 92.44	 92.00		Avg2.	529	534	489	 91.57	 92.44	 92.00	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 40	Log-likelihood                       =       -510.291837	Norm(log-likelihood gradient vector) =         35.333466	Norm(lambda vector)                  =         82.517685	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	512	 95.70	 96.79	 96.24		o	725	749	723	 96.53	 99.72	 98.10		i-np	691	661	650	 98.34	 94.07	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.86	 96.86	 96.86		Avg2.	1945	1945	1885	 96.92	 96.92	 96.92	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	488	 91.21	 92.25	 91.73		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.21	 92.25	 91.73		Avg2.	529	535	488	 91.21	 92.25	 91.73	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 41	Log-likelihood                       =       -482.098069	Norm(log-likelihood gradient vector) =         44.143191	Norm(lambda vector)                  =         84.617361	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	512	 95.52	 96.79	 96.15		o	725	750	724	 96.53	 99.86	 98.17		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.85	 96.86	 96.85		Avg2.	1945	1945	1885	 96.92	 96.92	 96.92	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	487	 90.86	 92.06	 91.46		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.86	 92.06	 91.46		Avg2.	529	536	487	 90.86	 92.06	 91.46	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 42	Log-likelihood                       =       -444.667969	Norm(log-likelihood gradient vector) =         47.538958	Norm(lambda vector)                  =         86.970268	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	510	 95.33	 96.41	 95.86		o	725	748	722	 96.52	 99.59	 98.03		i-np	691	662	649	 98.04	 93.92	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.63	 96.64	 96.63		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	484	 90.47	 91.49	 90.98		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.47	 91.49	 90.98		Avg2.	529	535	484	 90.47	 91.49	 90.98	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 43	Log-likelihood                       =       -399.478439	Norm(log-likelihood gradient vector) =         60.772111	Norm(lambda vector)                  =         90.582019	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	543	513	 94.48	 96.98	 95.71		o	725	751	723	 96.27	 99.72	 97.97		i-np	691	651	644	 98.92	 93.20	 95.98		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.56	 96.63	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	543	489	 90.06	 92.44	 91.23		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.06	 92.44	 91.23		Avg2.	529	543	489	 90.06	 92.44	 91.23	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 44	Log-likelihood                       =       -388.520884	Norm(log-likelihood gradient vector) =        120.279815	Norm(lambda vector)                  =         95.579563	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	538	510	 94.80	 96.41	 95.60		o	725	749	721	 96.26	 99.45	 97.83		i-np	691	658	646	 98.18	 93.49	 95.77		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.41	 96.45	 96.43		Avg2.	1945	1945	1877	 96.50	 96.50	 96.50	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	538	485	 90.15	 91.68	 90.91		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.15	 91.68	 90.91		Avg2.	529	538	485	 90.15	 91.68	 90.91	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 45	Log-likelihood                       =       -379.851055	Norm(log-likelihood gradient vector) =         50.479547	Norm(lambda vector)                  =         93.049675	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	539	510	 94.62	 96.41	 95.51		o	725	749	721	 96.26	 99.45	 97.83		i-np	691	657	645	 98.17	 93.34	 95.70		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.35	 96.40	 96.38		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	539	484	 89.80	 91.49	 90.64		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.80	 91.49	 90.64		Avg2.	529	539	484	 89.80	 91.49	 90.64	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 46	Log-likelihood                       =       -370.605261	Norm(log-likelihood gradient vector) =         31.917102	Norm(lambda vector)                  =         93.553564	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	509	 94.79	 96.22	 95.50		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	660	646	 97.88	 93.49	 95.63		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.35	 96.39	 96.37		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	481	 89.57	 90.93	 90.24		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.57	 90.93	 90.24		Avg2.	529	537	481	 89.57	 90.93	 90.24	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 4 secondsIteration: 47	Log-likelihood                       =       -364.241403	Norm(log-likelihood gradient vector) =         24.772455	Norm(lambda vector)                  =         93.167307	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	509	 94.96	 96.22	 95.59		o	725	747	721	 96.52	 99.45	 97.96		i-np	691	662	648	 97.89	 93.78	 95.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.48	 96.47		Avg2.	1945	1945	1878	 96.56	 96.56	 96.56	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	481	 89.74	 90.93	 90.33		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.74	 90.93	 90.33		Avg2.	529	536	481	 89.74	 90.93	 90.33	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 48	Log-likelihood                       =       -359.131350	Norm(log-likelihood gradient vector) =         27.887901	Norm(lambda vector)                  =         93.044991	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	508	 95.49	 96.03	 95.76		o	725	744	720	 96.77	 99.31	 98.03		i-np	691	669	653	 97.61	 94.50	 96.03		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.62	 96.61	 96.62		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	482	 90.60	 91.12	 90.86		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.60	 91.12	 90.86		Avg2.	529	532	482	 90.60	 91.12	 90.86	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 49	Log-likelihood                       =       -347.267440	Norm(log-likelihood gradient vector) =         27.161328	Norm(lambda vector)                  =         94.038434	Iteration elapsed: 3 seconds	Label-based performance evaluation:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -