⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_second-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_SECOND-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	493	 92.15	 93.19	 92.67		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.15	 93.19	 92.67		Avg2.	529	535	493	 92.15	 93.19	 92.67	Current max chunk-based F1:  92.67 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 25	Log-likelihood                       =       -861.383280	Norm(log-likelihood gradient vector) =        235.042924	Norm(lambda vector)                  =         62.836552	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	663	651	 98.19	 94.21	 96.16		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.82	 96.82	 96.82		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	489	 91.57	 92.44	 92.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.57	 92.44	 92.00		Avg2.	529	534	489	 91.57	 92.44	 92.00	Current max chunk-based F1:  92.67 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 4 secondsIteration: 26	Log-likelihood                       =       -816.404322	Norm(log-likelihood gradient vector) =         88.485824	Norm(lambda vector)                  =         62.540339	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	750	721	 96.13	 99.45	 97.76		i-np	691	661	651	 98.49	 94.21	 96.30		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.83	 96.82	 96.82		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	491	 91.95	 92.82	 92.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.95	 92.82	 92.38		Avg2.	529	534	491	 91.95	 92.82	 92.38	Current max chunk-based F1:  92.67 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 27	Log-likelihood                       =       -819.545850	Norm(log-likelihood gradient vector) =         68.374599	Norm(lambda vector)                  =         61.815911	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	663	651	 98.19	 94.21	 96.16		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.82	 96.82	 96.82		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	489	 91.57	 92.44	 92.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.57	 92.44	 92.00		Avg2.	529	534	489	 91.57	 92.44	 92.00	Current max chunk-based F1:  92.67 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 28	Log-likelihood                       =       -815.289658	Norm(log-likelihood gradient vector) =         76.728470	Norm(lambda vector)                  =         62.364822	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	512	 96.24	 96.79	 96.51		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	665	655	 98.50	 94.79	 96.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.04	 97.01	 97.03		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	493	 92.67	 93.19	 92.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.67	 93.19	 92.93		Avg2.	529	532	493	 92.67	 93.19	 92.93	Current max chunk-based F1:  92.93 (iteration 28)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 29	Log-likelihood                       =       -820.899568	Norm(log-likelihood gradient vector) =         80.452025	Norm(lambda vector)                  =         61.822488	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	750	721	 96.13	 99.45	 97.76		i-np	691	661	651	 98.49	 94.21	 96.30		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.83	 96.82	 96.82		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	491	 91.95	 92.82	 92.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.95	 92.82	 92.38		Avg2.	529	534	491	 91.95	 92.82	 92.38	Current max chunk-based F1:  92.93 (iteration 28)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 30	Log-likelihood                       =       -812.247001	Norm(log-likelihood gradient vector) =         63.768169	Norm(lambda vector)                  =         62.221532	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	514	 96.07	 97.16	 96.62		o	725	747	721	 96.52	 99.45	 97.96		i-np	691	663	653	 98.49	 94.50	 96.45		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.03	 97.04	 97.03		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	494	 92.34	 93.38	 92.86		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.34	 93.38	 92.86		Avg2.	529	535	494	 92.34	 93.38	 92.86	Current max chunk-based F1:  92.93 (iteration 28)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 31	Log-likelihood                       =       -812.014738	Norm(log-likelihood gradient vector) =         86.807824	Norm(lambda vector)                  =         62.715685	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	514	 96.25	 97.16	 96.71		o	725	747	722	 96.65	 99.59	 98.10		i-np	691	664	654	 98.49	 94.65	 96.53		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.13	 97.13	 97.13		Avg2.	1945	1945	1890	 97.17	 97.17	 97.17	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	495	 92.70	 93.57	 93.13		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.70	 93.57	 93.13		Avg2.	529	534	495	 92.70	 93.57	 93.13	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 32	Log-likelihood                       =       -790.577997	Norm(log-likelihood gradient vector) =         79.817666	Norm(lambda vector)                  =         64.260061	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	523	506	 96.75	 95.65	 96.20		o	725	740	718	 97.03	 99.03	 98.02		i-np	691	682	660	 96.77	 95.51	 96.14		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.85	 96.73	 96.79		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	523	482	 92.16	 91.12	 91.63		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.16	 91.12	 91.63		Avg2.	529	523	482	 92.16	 91.12	 91.63	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 33	Log-likelihood                       =       -780.392047	Norm(log-likelihood gradient vector) =        332.490741	Norm(lambda vector)                  =         70.993259	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	508	 96.58	 96.03	 96.30		o	725	742	719	 96.90	 99.17	 98.02		i-np	691	677	658	 97.19	 95.22	 96.20		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.89	 96.81	 96.85		Avg2.	1945	1945	1885	 96.92	 96.92	 96.92	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	485	 92.21	 91.68	 91.94		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.21	 91.68	 91.94		Avg2.	529	526	485	 92.21	 91.68	 91.94	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 34	Log-likelihood                       =       -747.858696	Norm(log-likelihood gradient vector) =        174.580929	Norm(lambda vector)                  =         67.630867	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	533	513	 96.25	 96.98	 96.61		o	725	751	724	 96.40	 99.86	 98.10		i-np	691	661	651	 98.49	 94.21	 96.30		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.05	 97.02	 97.03		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	533	490	 91.93	 92.63	 92.28		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.93	 92.63	 92.28		Avg2.	529	533	490	 91.93	 92.63	 92.28	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 4 secondsIteration: 35	Log-likelihood                       =       -701.115857	Norm(log-likelihood gradient vector) =         74.109673	Norm(lambda vector)                  =         72.715337	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	533	513	 96.25	 96.98	 96.61		o	725	751	724	 96.40	 99.86	 98.10		i-np	691	661	651	 98.49	 94.21	 96.30		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.05	 97.02	 97.03		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	533	490	 91.93	 92.63	 92.28		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.93	 92.63	 92.28		Avg2.	529	533	490	 91.93	 92.63	 92.28	Current max chunk-based F1:  93.13 (iteration 31)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 36	Log-likelihood                       =       -667.941347	Norm(log-likelihood gradient vector) =         49.907195	Norm(lambda vector)                  =         72.998816	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	513	 96.07	 96.98	 96.52		o	725	752	724	 96.28	 99.86	 98.04		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.94	 96.92	 96.93		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	489	 91.57	 92.44	 92.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.57	 92.44	 92.00		Avg2.	529	534	489	 91.57	 92.44	 92.00

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -