⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_second-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_SECOND-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
		-----	------	-----	-----	-------	-------	-------------		b-np	529	509	496	 97.45	 93.76	 95.57		o	725	736	712	 96.74	 98.21	 97.47		i-np	691	700	665	 95.00	 96.24	 95.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.40	 96.07	 96.23		Avg2.	1945	1945	1873	 96.30	 96.30	 96.30	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	509	463	 90.96	 87.52	 89.21		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.96	 87.52	 89.21		Avg2.	529	509	463	 90.96	 87.52	 89.21	Current max chunk-based F1:  90.13 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 13	Log-likelihood                       =      -2707.178789	Norm(log-likelihood gradient vector) =        799.844904	Norm(lambda vector)                  =         28.371674	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	523	506	 96.75	 95.65	 96.20		o	725	750	721	 96.13	 99.45	 97.76		i-np	691	672	657	 97.77	 95.08	 96.40		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.88	 96.73	 96.81		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	523	482	 92.16	 91.12	 91.63		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.16	 91.12	 91.63		Avg2.	529	523	482	 92.16	 91.12	 91.63	Current max chunk-based F1:  91.63 (iteration 13)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 14	Log-likelihood                       =      -2356.891429	Norm(log-likelihood gradient vector) =        232.156997	Norm(lambda vector)                  =         28.929834	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	524	507	 96.76	 95.84	 96.30		o	725	753	723	 96.02	 99.72	 97.83		i-np	691	668	656	 98.20	 94.93	 96.54		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.99	 96.83	 96.91		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	524	483	 92.18	 91.30	 91.74		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.18	 91.30	 91.74		Avg2.	529	524	483	 92.18	 91.30	 91.74	Current max chunk-based F1:  91.74 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 15	Log-likelihood                       =      -2272.541321	Norm(log-likelihood gradient vector) =        168.014964	Norm(lambda vector)                  =         29.541731	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	509	 96.77	 96.22	 96.49		o	725	752	723	 96.14	 99.72	 97.90		i-np	691	667	656	 98.35	 94.93	 96.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.09	 96.96	 97.02		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	486	 92.40	 91.87	 92.13		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.40	 91.87	 92.13		Avg2.	529	526	486	 92.40	 91.87	 92.13	Current max chunk-based F1:  92.13 (iteration 15)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 16	Log-likelihood                       =      -2154.536170	Norm(log-likelihood gradient vector) =        188.420259	Norm(lambda vector)                  =         30.849715	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	530	509	 96.04	 96.22	 96.13		o	725	753	722	 95.88	 99.59	 97.70		i-np	691	662	650	 98.19	 94.07	 96.08		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.70	 96.62	 96.66		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	530	483	 91.13	 91.30	 91.22		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.13	 91.30	 91.22		Avg2.	529	530	483	 91.13	 91.30	 91.22	Current max chunk-based F1:  92.13 (iteration 15)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 17	Log-likelihood                       =      -1953.940354	Norm(log-likelihood gradient vector) =        173.428299	Norm(lambda vector)                  =         33.437022	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	533	510	 95.68	 96.41	 96.05		o	725	758	723	 95.38	 99.72	 97.51		i-np	691	654	646	 98.78	 93.49	 96.06		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.61	 96.54	 96.58		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	533	488	 91.56	 92.25	 91.90		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.56	 92.25	 91.90		Avg2.	529	533	488	 91.56	 92.25	 91.90	Current max chunk-based F1:  92.13 (iteration 15)	Training iteration elapsed (including testing & evaluation time): 4 secondsIteration: 18	Log-likelihood                       =      -1888.312044	Norm(log-likelihood gradient vector) =        554.881303	Norm(lambda vector)                  =         41.341639	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	531	512	 96.42	 96.79	 96.60		o	725	749	722	 96.40	 99.59	 97.96		i-np	691	665	655	 98.50	 94.79	 96.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.10	 97.05	 97.08		Avg2.	1945	1945	1889	 97.12	 97.12	 97.12	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	531	489	 92.09	 92.44	 92.26		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.09	 92.44	 92.26		Avg2.	529	531	489	 92.09	 92.44	 92.26	Current max chunk-based F1:  92.26 (iteration 18)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 19	Log-likelihood                       =      -1570.447923	Norm(log-likelihood gradient vector) =        171.378700	Norm(lambda vector)                  =         42.119822	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	533	513	 96.25	 96.98	 96.61		o	725	752	723	 96.14	 99.72	 97.90		i-np	691	660	652	 98.79	 94.36	 96.52		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.06	 97.02	 97.04		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	533	490	 91.93	 92.63	 92.28		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.93	 92.63	 92.28		Avg2.	529	533	490	 91.93	 92.63	 92.28	Current max chunk-based F1:  92.28 (iteration 19)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 20	Log-likelihood                       =      -1481.665988	Norm(log-likelihood gradient vector) =        113.525147	Norm(lambda vector)                  =         42.827627	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	511	 96.78	 96.60	 96.69		o	725	747	723	 96.79	 99.72	 98.23		i-np	691	670	657	 98.06	 95.08	 96.55		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.21	 97.13	 97.17		Avg2.	1945	1945	1891	 97.22	 97.22	 97.22	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	486	 92.05	 91.87	 91.96		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.05	 91.87	 91.96		Avg2.	529	528	486	 92.05	 91.87	 91.96	Current max chunk-based F1:  92.28 (iteration 19)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 21	Log-likelihood                       =      -1363.400577	Norm(log-likelihood gradient vector) =        130.652414	Norm(lambda vector)                  =         45.245676	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	513	 96.43	 96.98	 96.70		o	725	751	724	 96.40	 99.86	 98.10		i-np	691	662	653	 98.64	 94.50	 96.53		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.16	 97.11	 97.14		Avg2.	1945	1945	1890	 97.17	 97.17	 97.17	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	489	 91.92	 92.44	 92.18		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.92	 92.44	 92.18		Avg2.	529	532	489	 91.92	 92.44	 92.18	Current max chunk-based F1:  92.28 (iteration 19)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 22	Log-likelihood                       =      -1263.401221	Norm(log-likelihood gradient vector) =        124.991112	Norm(lambda vector)                  =         47.711962	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	528	509	 96.40	 96.22	 96.31		o	725	747	721	 96.52	 99.45	 97.96		i-np	691	670	655	 97.76	 94.79	 96.25		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.89	 96.82	 96.86		Avg2.	1945	1945	1885	 96.92	 96.92	 96.92	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	528	486	 92.05	 91.87	 91.96		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.05	 91.87	 91.96		Avg2.	529	528	486	 92.05	 91.87	 91.96	Current max chunk-based F1:  92.28 (iteration 19)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 23	Log-likelihood                       =      -1094.575487	Norm(log-likelihood gradient vector) =         98.800285	Norm(lambda vector)                  =         53.053250	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	510	 95.86	 96.41	 96.14		o	725	751	722	 96.14	 99.59	 97.83		i-np	691	662	650	 98.19	 94.07	 96.08		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.73	 96.69	 96.71		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	486	 91.35	 91.87	 91.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.35	 91.87	 91.61		Avg2.	529	532	486	 91.35	 91.87	 91.61	Current max chunk-based F1:  92.28 (iteration 19)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 24	Log-likelihood                       =       -940.225424	Norm(log-likelihood gradient vector) =        144.274775	Norm(lambda vector)                  =         57.697336	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	514	 96.07	 97.16	 96.62		o	725	749	723	 96.53	 99.72	 98.10		i-np	691	661	652	 98.64	 94.36	 96.45		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.08	 97.08	 97.08		Avg2.	1945	1945	1889	 97.12	 97.12	 97.12	Chunk-based performance evaluation:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -