⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt_second-ordercrfs

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT_SECOND-ORDERCRFS
📖 第 1 页 / 共 5 页
字号:
OPTION VALUES:Model directory: ./Training data file: train.taggedTesting data file: test.taggedUnlabeled data file: data.untaggedLabel representation: IOB2Model file: model.txtTraining log file (this one): trainlog.txtSecond-order Markov CRFsNumber of labels: 4Number of training sequences: 412Number of testing sequences: 86Number of unlabeled sequences: 0Number of context predicates: 17487Number of features: 30283Feature rare threshold: 1Context predicate rare threshold: 1Using multiple rare thresholds for features: 0Highlight feature: 0Number of training iterations: 60Initial lambda value:     0.0000Sigma square (for smoothing):   100.0000Epsilon for L-BFGS convergence:   0.000100Number of approximated hessian matrixes: 7Start to train ...Iteration: 1	Log-likelihood                       =     -26641.805032	Norm(log-likelihood gradient vector) =       5547.125079	Norm(lambda vector)                  =          0.000000	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	486	368	 75.72	 69.57	 72.51		o	725	829	646	 77.93	 89.10	 83.14		i-np	691	630	518	 82.22	 74.96	 78.43		-----	------	-----	-----	-------	-------	-------------		Avg1.				 78.62	 77.88	 78.25		Avg2.	1945	1945	1532	 78.77	 78.77	 78.77	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	486	277	 57.00	 52.36	 54.58		-----	------	-----	-----	-------	-------	-------------		Avg1.				 57.00	 52.36	 54.58		Avg2.	529	486	277	 57.00	 52.36	 54.58	Current max chunk-based F1:  54.58 (iteration 1)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 2	Log-likelihood                       =     -21394.504556	Norm(log-likelihood gradient vector) =       4828.454251	Norm(lambda vector)                  =          1.000000	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	479	391	 81.63	 73.91	 77.58		o	725	799	660	 82.60	 91.03	 86.61		i-np	691	667	559	 83.81	 80.90	 82.33		-----	------	-----	-----	-------	-------	-------------		Avg1.				 82.68	 81.95	 82.31		Avg2.	1945	1945	1610	 82.78	 82.78	 82.78	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	479	303	 63.26	 57.28	 60.12		-----	------	-----	-----	-------	-------	-------------		Avg1.				 63.26	 57.28	 60.12		Avg2.	529	479	303	 63.26	 57.28	 60.12	Current max chunk-based F1:  60.12 (iteration 2)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 3	Log-likelihood                       =      -8730.879901	Norm(log-likelihood gradient vector) =       3259.885589	Norm(lambda vector)                  =          9.709716	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	408	382	 93.63	 72.21	 81.54		o	725	800	693	 86.62	 95.59	 90.89		i-np	691	737	631	 85.62	 91.32	 88.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 88.62	 86.37	 87.48		Avg2.	1945	1945	1706	 87.71	 87.71	 87.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	408	310	 75.98	 58.60	 66.17		-----	------	-----	-----	-------	-------	-------------		Avg1.				 75.98	 58.60	 66.17		Avg2.	529	408	310	 75.98	 58.60	 66.17	Current max chunk-based F1:  66.17 (iteration 3)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 4	Log-likelihood                       =      -6525.602824	Norm(log-likelihood gradient vector) =       1575.238232	Norm(lambda vector)                  =          9.457559	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	501	457	 91.22	 86.39	 88.74		o	725	776	708	 91.24	 97.66	 94.34		i-np	691	668	611	 91.47	 88.42	 89.92		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.31	 90.82	 91.06		Avg2.	1945	1945	1776	 91.31	 91.31	 91.31	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	501	384	 76.65	 72.59	 74.56		-----	------	-----	-----	-------	-------	-------------		Avg1.				 76.65	 72.59	 74.56		Avg2.	529	501	384	 76.65	 72.59	 74.56	Current max chunk-based F1:  74.56 (iteration 4)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 5	Log-likelihood                       =      -6046.275745	Norm(log-likelihood gradient vector) =        996.018392	Norm(lambda vector)                  =          9.011274	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	516	471	 91.28	 89.04	 90.14		o	725	795	714	 89.81	 98.48	 93.95		i-np	691	634	598	 94.32	 86.54	 90.26		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.80	 91.35	 91.58		Avg2.	1945	1945	1783	 91.67	 91.67	 91.67	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	516	410	 79.46	 77.50	 78.47		-----	------	-----	-----	-------	-------	-------------		Avg1.				 79.46	 77.50	 78.47		Avg2.	529	516	410	 79.46	 77.50	 78.47	Current max chunk-based F1:  78.47 (iteration 5)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 6	Log-likelihood                       =      -5707.796577	Norm(log-likelihood gradient vector) =        680.797163	Norm(lambda vector)                  =          9.068814	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	491	 93.17	 92.82	 92.99		o	725	774	717	 92.64	 98.90	 95.66		i-np	691	644	622	 96.58	 90.01	 93.18		-----	------	-----	-----	-------	-------	-------------		Avg1.				 94.13	 93.91	 94.02		Avg2.	1945	1945	1830	 94.09	 94.09	 94.09	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	452	 85.77	 85.44	 85.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 85.77	 85.44	 85.61		Avg2.	529	527	452	 85.77	 85.44	 85.61	Current max chunk-based F1:  85.61 (iteration 6)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 7	Log-likelihood                       =      -5162.021610	Norm(log-likelihood gradient vector) =        665.946239	Norm(lambda vector)                  =         10.028874	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	524	494	 94.27	 93.38	 93.83		o	725	774	721	 93.15	 99.45	 96.20		i-np	691	647	630	 97.37	 91.17	 94.17		-----	------	-----	-----	-------	-------	-------------		Avg1.				 94.93	 94.67	 94.80		Avg2.	1945	1945	1845	 94.86	 94.86	 94.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	524	459	 87.60	 86.77	 87.18		-----	------	-----	-----	-------	-------	-------------		Avg1.				 87.60	 86.77	 87.18		Avg2.	529	524	459	 87.60	 86.77	 87.18	Current max chunk-based F1:  87.18 (iteration 7)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 8	Log-likelihood                       =      -4480.794556	Norm(log-likelihood gradient vector) =        516.549106	Norm(lambda vector)                  =         11.715696	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	507	492	 97.04	 93.01	 94.98		o	725	734	708	 96.46	 97.66	 97.05		i-np	691	704	664	 94.32	 96.09	 95.20		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.94	 95.58	 95.76		Avg2.	1945	1945	1864	 95.84	 95.84	 95.84	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	507	457	 90.14	 86.39	 88.22		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.14	 86.39	 88.22		Avg2.	529	507	457	 90.14	 86.39	 88.22	Current max chunk-based F1:  88.22 (iteration 8)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 9	Log-likelihood                       =      -3680.402424	Norm(log-likelihood gradient vector) =        742.650631	Norm(lambda vector)                  =         15.933625	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	504	 96.00	 95.27	 95.64		o	725	759	722	 95.13	 99.59	 97.30		i-np	691	661	646	 97.73	 93.49	 95.56		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.29	 96.12	 96.20		Avg2.	1945	1945	1872	 96.25	 96.25	 96.25	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	475	 90.48	 89.79	 90.13		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.48	 89.79	 90.13		Avg2.	529	525	475	 90.48	 89.79	 90.13	Current max chunk-based F1:  90.13 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 10	Log-likelihood                       =      -3304.002286	Norm(log-likelihood gradient vector) =        295.224214	Norm(lambda vector)                  =         17.343823	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	503	 95.09	 95.09	 95.09		o	725	765	723	 94.51	 99.72	 97.05		i-np	691	651	638	 98.00	 92.33	 95.08		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.87	 95.71	 95.79		Avg2.	1945	1945	1864	 95.84	 95.84	 95.84	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	473	 89.41	 89.41	 89.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.41	 89.41	 89.41		Avg2.	529	529	473	 89.41	 89.41	 89.41	Current max chunk-based F1:  90.13 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 11	Log-likelihood                       =      -3081.693064	Norm(log-likelihood gradient vector) =        321.707885	Norm(lambda vector)                  =         19.516581	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	505	 94.92	 95.46	 95.19		o	725	766	723	 94.39	 99.72	 96.98		i-np	691	647	637	 98.45	 92.19	 95.22		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.92	 95.79	 95.86		Avg2.	1945	1945	1865	 95.89	 95.89	 95.89	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	477	 89.66	 90.17	 89.92		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.66	 90.17	 89.92		Avg2.	529	532	477	 89.66	 90.17	 89.92	Current max chunk-based F1:  90.13 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 12	Log-likelihood                       =      -2811.846856	Norm(log-likelihood gradient vector) =        292.588814	Norm(lambda vector)                  =         22.361233	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -