⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT
📖 第 1 页 / 共 5 页
字号:
		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	538	512	 95.17	 96.79	 95.97		o	725	748	722	 96.52	 99.59	 98.03		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.72	 96.76	 96.74		Avg2.	1945	1945	1883	 96.81	 96.81	 96.81	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	538	489	 90.89	 92.44	 91.66		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.89	 92.44	 91.66		Avg2.	529	538	489	 90.89	 92.44	 91.66	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 50	Log-likelihood                       =       -407.762496	Norm(log-likelihood gradient vector) =         19.678027	Norm(lambda vector)                  =         98.675566	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	538	512	 95.17	 96.79	 95.97		o	725	748	722	 96.52	 99.59	 98.03		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.72	 96.76	 96.74		Avg2.	1945	1945	1883	 96.81	 96.81	 96.81	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	538	489	 90.89	 92.44	 91.66		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.89	 92.44	 91.66		Avg2.	529	538	489	 90.89	 92.44	 91.66	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 51	Log-likelihood                       =       -395.745090	Norm(log-likelihood gradient vector) =         20.766464	Norm(lambda vector)                  =         99.551565	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	511	 95.34	 96.60	 95.96		o	725	747	721	 96.52	 99.45	 97.96		i-np	691	662	650	 98.19	 94.07	 96.08		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.68	 96.70	 96.69		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	488	 91.04	 92.25	 91.64		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.04	 92.25	 91.64		Avg2.	529	536	488	 91.04	 92.25	 91.64	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 52	Log-likelihood                       =       -368.102936	Norm(log-likelihood gradient vector) =         45.527162	Norm(lambda vector)                  =        103.718326	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	541	515	 95.19	 97.35	 96.26		o	725	752	723	 96.14	 99.72	 97.90		i-np	691	652	646	 99.08	 93.49	 96.20		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.81	 96.86	 96.83		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	541	493	 91.13	 93.19	 92.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.13	 93.19	 92.15		Avg2.	529	541	493	 91.13	 93.19	 92.15	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 53	Log-likelihood                       =       -359.217619	Norm(log-likelihood gradient vector) =         68.098375	Norm(lambda vector)                  =        106.930981	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	538	512	 95.17	 96.79	 95.97		o	725	749	722	 96.40	 99.59	 97.96		i-np	691	658	648	 98.48	 93.78	 96.07		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.68	 96.72	 96.70		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	538	489	 90.89	 92.44	 91.66		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.89	 92.44	 91.66		Avg2.	529	538	489	 90.89	 92.44	 91.66	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 54	Log-likelihood                       =       -357.663866	Norm(log-likelihood gradient vector) =         22.534039	Norm(lambda vector)                  =        105.223458	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	511	 95.34	 96.60	 95.96		o	725	747	721	 96.52	 99.45	 97.96		i-np	691	662	650	 98.19	 94.07	 96.08		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.68	 96.70	 96.69		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	488	 91.04	 92.25	 91.64		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.04	 92.25	 91.64		Avg2.	529	536	488	 91.04	 92.25	 91.64	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 55	Log-likelihood                       =       -355.682217	Norm(log-likelihood gradient vector) =         17.408526	Norm(lambda vector)                  =        107.620719	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.61	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	487	 90.69	 92.06	 91.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.69	 92.06	 91.37		Avg2.	529	537	487	 90.69	 92.06	 91.37	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 56	Log-likelihood                       =       -354.663624	Norm(log-likelihood gradient vector) =         39.336816	Norm(lambda vector)                  =        109.522797	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	539	513	 95.18	 96.98	 96.07		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	658	648	 98.48	 93.78	 96.07		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.68	 96.73	 96.71		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	539	489	 90.72	 92.44	 91.57		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.72	 92.44	 91.57		Avg2.	529	539	489	 90.72	 92.44	 91.57	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 57	Log-likelihood                       =       -361.274244	Norm(log-likelihood gradient vector) =         29.799452	Norm(lambda vector)                  =        111.629217	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.61	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	487	 90.69	 92.06	 91.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.69	 92.06	 91.37		Avg2.	529	537	487	 90.69	 92.06	 91.37	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 58	Log-likelihood                       =       -354.843561	Norm(log-likelihood gradient vector) =         33.393083	Norm(lambda vector)                  =        109.864393	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.61	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	487	 90.69	 92.06	 91.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.69	 92.06	 91.37		Avg2.	529	537	487	 90.69	 92.06	 91.37	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 59	Log-likelihood                       =       -354.672323	Norm(log-likelihood gradient vector) =         38.094772	Norm(lambda vector)                  =        109.591104	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.61	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	487	 90.69	 92.06	 91.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.69	 92.06	 91.37		Avg2.	529	537	487	 90.69	 92.06	 91.37	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 60	Log-likelihood                       =       -354.664311	Norm(log-likelihood gradient vector) =         39.076807	Norm(lambda vector)                  =        109.536994	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.58	 96.61	 96.59		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	487	 90.69	 92.06	 91.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.69	 92.06	 91.37		Avg2.	529	537	487	 90.69	 92.06	 91.37	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsThe training process elapsed: 160 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	516	 96.99	 97.54	 97.27		o	725	744	723	 97.18	 99.72	 98.43		i-np	691	669	660	 98.65	 95.51	 97.06		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.61	 97.59	 97.60		Avg2.	1945	1945	1899	 97.63	 97.63	 97.63	Chunk-

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -