⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT
📖 第 1 页 / 共 5 页
字号:
	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 37	Log-likelihood                       =       -689.565855	Norm(log-likelihood gradient vector) =        166.555233	Norm(lambda vector)                  =         80.082637	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	749	721	 96.26	 99.45	 97.83		i-np	691	662	651	 98.34	 94.21	 96.23		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.83	 96.82	 96.82		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	491	 91.95	 92.82	 92.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.95	 92.82	 92.38		Avg2.	529	534	491	 91.95	 92.82	 92.38	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 38	Log-likelihood                       =       -629.807429	Norm(log-likelihood gradient vector) =         58.758443	Norm(lambda vector)                  =         81.957445	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	512	 95.88	 96.79	 96.33		o	725	747	721	 96.52	 99.45	 97.96		i-np	691	664	653	 98.34	 94.50	 96.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.91	 96.91	 96.91		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	491	 91.95	 92.82	 92.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.95	 92.82	 92.38		Avg2.	529	534	491	 91.95	 92.82	 92.38	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 39	Log-likelihood                       =       -607.920013	Norm(log-likelihood gradient vector) =         48.497812	Norm(lambda vector)                  =         82.528934	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	513	 95.53	 96.98	 96.25		o	725	750	722	 96.27	 99.59	 97.90		i-np	691	658	649	 98.63	 93.92	 96.22		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.81	 96.83	 96.82		Avg2.	1945	1945	1884	 96.86	 96.86	 96.86	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	491	 91.43	 92.82	 92.12		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.43	 92.82	 92.12		Avg2.	529	537	491	 91.43	 92.82	 92.12	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 40	Log-likelihood                       =       -562.102825	Norm(log-likelihood gradient vector) =         32.321593	Norm(lambda vector)                  =         84.285747	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	538	512	 95.17	 96.79	 95.97		o	725	751	722	 96.14	 99.59	 97.83		i-np	691	656	647	 98.63	 93.63	 96.07		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.64	 96.67	 96.66		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	538	489	 90.89	 92.44	 91.66		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.89	 92.44	 91.66		Avg2.	529	538	489	 90.89	 92.44	 91.66	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 41	Log-likelihood                       =       -508.560227	Norm(log-likelihood gradient vector) =         39.517495	Norm(lambda vector)                  =         87.277170	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	530	508	 95.85	 96.03	 95.94		o	725	743	719	 96.77	 99.17	 97.96		i-np	691	672	656	 97.62	 94.93	 96.26		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.75	 96.71	 96.73		Avg2.	1945	1945	1883	 96.81	 96.81	 96.81	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	530	484	 91.32	 91.49	 91.41		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.32	 91.49	 91.41		Avg2.	529	530	484	 91.32	 91.49	 91.41	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 42	Log-likelihood                       =       -486.672774	Norm(log-likelihood gradient vector) =        164.653400	Norm(lambda vector)                  =         91.083795	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	511	 95.34	 96.60	 95.96		o	725	750	722	 96.27	 99.59	 97.90		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.70	 96.70	 96.70		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	488	 91.04	 92.25	 91.64		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.04	 92.25	 91.64		Avg2.	529	536	488	 91.04	 92.25	 91.64	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 43	Log-likelihood                       =       -487.542661	Norm(log-likelihood gradient vector) =         60.751106	Norm(lambda vector)                  =         88.756574	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	750	722	 96.27	 99.59	 97.90		i-np	691	658	648	 98.48	 93.78	 96.07		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.64	 96.65	 96.64		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	488	 90.88	 92.25	 91.56		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.88	 92.25	 91.56		Avg2.	529	537	488	 90.88	 92.25	 91.56	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 44	Log-likelihood                       =       -469.798390	Norm(log-likelihood gradient vector) =         38.519398	Norm(lambda vector)                  =         89.675731	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	511	 95.16	 96.60	 95.87		o	725	750	722	 96.27	 99.59	 97.90		i-np	691	658	648	 98.48	 93.78	 96.07		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.64	 96.65	 96.64		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	488	 90.88	 92.25	 91.56		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.88	 92.25	 91.56		Avg2.	529	537	488	 90.88	 92.25	 91.56	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 45	Log-likelihood                       =       -447.284542	Norm(log-likelihood gradient vector) =         31.830759	Norm(lambda vector)                  =         91.545305	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	537	512	 95.34	 96.79	 96.06		o	725	749	722	 96.40	 99.59	 97.96		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.74	 96.76	 96.75		Avg2.	1945	1945	1883	 96.81	 96.81	 96.81	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	537	489	 91.06	 92.44	 91.74		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.06	 92.44	 91.74		Avg2.	529	537	489	 91.06	 92.44	 91.74	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 46	Log-likelihood                       =       -440.430558	Norm(log-likelihood gradient vector) =         31.988613	Norm(lambda vector)                  =         93.639895	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	539	514	 95.36	 97.16	 96.25		o	725	746	722	 96.78	 99.59	 98.16		i-np	691	660	651	 98.64	 94.21	 96.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.99	 96.96		Avg2.	1945	1945	1887	 97.02	 97.02	 97.02	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	539	491	 91.09	 92.82	 91.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.09	 92.82	 91.95		Avg2.	529	539	491	 91.09	 92.82	 91.95	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 47	Log-likelihood                       =       -439.727547	Norm(log-likelihood gradient vector) =         93.390461	Norm(lambda vector)                  =         97.525655	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	539	514	 95.36	 97.16	 96.25		o	725	746	722	 96.78	 99.59	 98.16		i-np	691	660	651	 98.64	 94.21	 96.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.99	 96.96		Avg2.	1945	1945	1887	 97.02	 97.02	 97.02	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	539	491	 91.09	 92.82	 91.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.09	 92.82	 91.95		Avg2.	529	539	491	 91.09	 92.82	 91.95	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 48	Log-likelihood                       =       -435.807013	Norm(log-likelihood gradient vector) =         51.727578	Norm(lambda vector)                  =        100.255725	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	539	514	 95.36	 97.16	 96.25		o	725	746	722	 96.78	 99.59	 98.16		i-np	691	660	651	 98.64	 94.21	 96.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.99	 96.96		Avg2.	1945	1945	1887	 97.02	 97.02	 97.02	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	539	491	 91.09	 92.82	 91.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.09	 92.82	 91.95		Avg2.	529	539	491	 91.09	 92.82	 91.95	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 49	Log-likelihood                       =       -422.232281	Norm(log-likelihood gradient vector) =         30.394636	Norm(lambda vector)                  =         99.185419	Iteration elapsed: 2 seconds	Label-based performance evaluation:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -