⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT
📖 第 1 页 / 共 5 页
字号:
		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	493	 92.67	 93.19	 92.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.67	 93.19	 92.93		Avg2.	529	532	493	 92.67	 93.19	 92.93	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 25	Log-likelihood                       =      -1163.592896	Norm(log-likelihood gradient vector) =        113.871440	Norm(lambda vector)                  =         59.674526	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	533	511	 95.87	 96.60	 96.23		o	725	752	722	 96.01	 99.59	 97.77		i-np	691	660	648	 98.18	 93.78	 95.93		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.69	 96.65	 96.67		Avg2.	1945	1945	1881	 96.71	 96.71	 96.71	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	533	487	 91.37	 92.06	 91.71		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.37	 92.06	 91.71		Avg2.	529	533	487	 91.37	 92.06	 91.71	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 26	Log-likelihood                       =      -1156.189097	Norm(log-likelihood gradient vector) =        194.921013	Norm(lambda vector)                  =         59.270862	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	514	 96.07	 97.16	 96.62		o	725	750	722	 96.27	 99.59	 97.90		i-np	691	660	651	 98.64	 94.21	 96.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.99	 96.99	 96.99		Avg2.	1945	1945	1887	 97.02	 97.02	 97.02	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	493	 92.15	 93.19	 92.67		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.15	 93.19	 92.67		Avg2.	529	535	493	 92.15	 93.19	 92.67	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 27	Log-likelihood                       =      -1154.162133	Norm(log-likelihood gradient vector) =        251.478948	Norm(lambda vector)                  =         60.697045	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	514	 96.07	 97.16	 96.62		o	725	751	722	 96.14	 99.59	 97.83		i-np	691	659	650	 98.63	 94.07	 96.30		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.95	 96.94	 96.94		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	492	 91.96	 93.01	 92.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.96	 93.01	 92.48		Avg2.	529	535	492	 91.96	 93.01	 92.48	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 28	Log-likelihood                       =      -1085.814942	Norm(log-likelihood gradient vector) =        107.650993	Norm(lambda vector)                  =         62.122666	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	536	514	 95.90	 97.16	 96.53		o	725	752	722	 96.01	 99.59	 97.77		i-np	691	657	647	 98.48	 93.63	 95.99		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.79	 96.79	 96.79		Avg2.	1945	1945	1883	 96.81	 96.81	 96.81	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	536	491	 91.60	 92.82	 92.21		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.60	 92.82	 92.21		Avg2.	529	536	491	 91.60	 92.82	 92.21	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 29	Log-likelihood                       =      -1046.357458	Norm(log-likelihood gradient vector) =         71.378414	Norm(lambda vector)                  =         64.555113	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	514	 96.07	 97.16	 96.62		o	725	751	722	 96.14	 99.59	 97.83		i-np	691	659	649	 98.48	 93.92	 96.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.90	 96.89	 96.89		Avg2.	1945	1945	1885	 96.92	 96.92	 96.92	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	491	 91.78	 92.82	 92.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.78	 92.82	 92.29		Avg2.	529	535	491	 91.78	 92.82	 92.29	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 30	Log-likelihood                       =      -1014.180158	Norm(log-likelihood gradient vector) =         83.077154	Norm(lambda vector)                  =         66.953281	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	514	 96.25	 97.16	 96.71		o	725	749	722	 96.40	 99.59	 97.96		i-np	691	662	652	 98.49	 94.36	 96.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.05	 97.04	 97.04		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	493	 92.32	 93.19	 92.76		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.32	 93.19	 92.76		Avg2.	529	534	493	 92.32	 93.19	 92.76	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 31	Log-likelihood                       =       -948.361601	Norm(log-likelihood gradient vector) =         88.858259	Norm(lambda vector)                  =         70.010782	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	539	514	 95.36	 97.16	 96.25		o	725	753	722	 95.88	 99.59	 97.70		i-np	691	653	644	 98.62	 93.20	 95.83		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.62	 96.65	 96.64		Avg2.	1945	1945	1880	 96.66	 96.66	 96.66	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	539	491	 91.09	 92.82	 91.95		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.09	 92.82	 91.95		Avg2.	529	539	491	 91.09	 92.82	 91.95	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 32	Log-likelihood                       =       -925.508126	Norm(log-likelihood gradient vector) =        242.362625	Norm(lambda vector)                  =         74.051341	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	513	 96.07	 96.98	 96.52		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	663	652	 98.34	 94.36	 96.31		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.93	 96.93		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	493	 92.32	 93.19	 92.76		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.32	 93.19	 92.76		Avg2.	529	534	493	 92.32	 93.19	 92.76	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 33	Log-likelihood                       =       -868.149846	Norm(log-likelihood gradient vector) =         75.192894	Norm(lambda vector)                  =         73.648661	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	513	 96.07	 96.98	 96.52		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	663	652	 98.34	 94.36	 96.31		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.93	 96.93		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	493	 92.32	 93.19	 92.76		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.32	 93.19	 92.76		Avg2.	529	534	493	 92.32	 93.19	 92.76	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 34	Log-likelihood                       =       -847.340354	Norm(log-likelihood gradient vector) =         55.420929	Norm(lambda vector)                  =         73.377900	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	513	 95.89	 96.98	 96.43		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	662	651	 98.34	 94.21	 96.23		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.87	 96.88	 96.88		Avg2.	1945	1945	1885	 96.92	 96.92	 96.92	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	492	 91.96	 93.01	 92.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.96	 93.01	 92.48		Avg2.	529	535	492	 91.96	 93.01	 92.48	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 35	Log-likelihood                       =       -816.799250	Norm(log-likelihood gradient vector) =         64.737245	Norm(lambda vector)                  =         73.814475	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	534	513	 96.07	 96.98	 96.52		o	725	748	721	 96.39	 99.45	 97.90		i-np	691	663	652	 98.34	 94.36	 96.31		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.93	 96.93	 96.93		Avg2.	1945	1945	1886	 96.97	 96.97	 96.97	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	534	493	 92.32	 93.19	 92.76		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.32	 93.19	 92.76		Avg2.	529	534	493	 92.32	 93.19	 92.76	Current max chunk-based F1:  92.93 (iteration 24)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 36	Log-likelihood                       =       -766.649638	Norm(log-likelihood gradient vector) =         65.650185	Norm(lambda vector)                  =         75.802568	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	531	511	 96.23	 96.60	 96.42		o	725	743	720	 96.90	 99.31	 98.09		i-np	691	671	657	 97.91	 95.08	 96.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.02	 97.00	 97.01		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	531	491	 92.47	 92.82	 92.64		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.47	 92.82	 92.64		Avg2.	529	531	491	 92.47	 92.82	 92.64

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -