⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT
📖 第 1 页 / 共 5 页
字号:
		-----	------	-----	-----	-------	-------	-------------		b-np	529	515	500	 97.09	 94.52	 95.79		o	725	742	716	 96.50	 98.76	 97.61		i-np	691	688	663	 96.37	 95.95	 96.16		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.65	 96.41	 96.53		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	515	475	 92.23	 89.79	 91.00		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.23	 89.79	 91.00		Avg2.	529	515	475	 92.23	 89.79	 91.00	Current max chunk-based F1:  91.00 (iteration 12)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 13	Log-likelihood                       =      -2874.128684	Norm(log-likelihood gradient vector) =        571.084534	Norm(lambda vector)                  =         27.459907	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	524	506	 96.56	 95.65	 96.11		o	725	749	720	 96.13	 99.31	 97.69		i-np	691	672	657	 97.77	 95.08	 96.40		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.82	 96.68	 96.75		Avg2.	1945	1945	1883	 96.81	 96.81	 96.81	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	524	483	 92.18	 91.30	 91.74		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.18	 91.30	 91.74		Avg2.	529	524	483	 92.18	 91.30	 91.74	Current max chunk-based F1:  91.74 (iteration 13)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 14	Log-likelihood                       =      -2727.109929	Norm(log-likelihood gradient vector) =        290.827106	Norm(lambda vector)                  =         28.536432	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	509	 96.58	 96.22	 96.40		o	725	749	721	 96.26	 99.45	 97.83		i-np	691	669	658	 98.36	 95.22	 96.76		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.07	 96.96	 97.02		Avg2.	1945	1945	1888	 97.07	 97.07	 97.07	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	489	 92.79	 92.44	 92.61		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.79	 92.44	 92.61		Avg2.	529	527	489	 92.79	 92.44	 92.61	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 15	Log-likelihood                       =      -2610.850678	Norm(log-likelihood gradient vector) =        192.260821	Norm(lambda vector)                  =         29.748733	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	530	509	 96.04	 96.22	 96.13		o	725	752	721	 95.88	 99.45	 97.63		i-np	691	663	652	 98.34	 94.36	 96.31		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.75	 96.67	 96.71		Avg2.	1945	1945	1882	 96.76	 96.76	 96.76	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	530	487	 91.89	 92.06	 91.97		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.89	 92.06	 91.97		Avg2.	529	530	487	 91.89	 92.06	 91.97	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 16	Log-likelihood                       =      -2495.206889	Norm(log-likelihood gradient vector) =        208.792291	Norm(lambda vector)                  =         31.031253	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	530	508	 95.85	 96.03	 95.94		o	725	755	721	 95.50	 99.45	 97.43		i-np	691	660	647	 98.03	 93.63	 95.78		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.46	 96.37	 96.41		Avg2.	1945	1945	1876	 96.45	 96.45	 96.45	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	530	481	 90.75	 90.93	 90.84		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.75	 90.93	 90.84		Avg2.	529	530	481	 90.75	 90.93	 90.84	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 17	Log-likelihood                       =      -2262.306669	Norm(log-likelihood gradient vector) =        190.425904	Norm(lambda vector)                  =         33.900238	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	521	501	 96.16	 94.71	 95.43		o	725	752	718	 95.48	 99.03	 97.22		i-np	691	672	650	 96.73	 94.07	 95.38		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.12	 95.94	 96.03		Avg2.	1945	1945	1869	 96.09	 96.09	 96.09	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	521	472	 90.60	 89.22	 89.90		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.60	 89.22	 89.90		Avg2.	529	521	472	 90.60	 89.22	 89.90	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 18	Log-likelihood                       =      -2111.935104	Norm(log-likelihood gradient vector) =        582.050917	Norm(lambda vector)                  =         41.183676	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	505	 96.19	 95.46	 95.83		o	725	752	719	 95.61	 99.17	 97.36		i-np	691	668	649	 97.16	 93.92	 95.51		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.32	 96.19	 96.25		Avg2.	1945	1945	1873	 96.30	 96.30	 96.30	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	476	 90.67	 89.98	 90.32		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.67	 89.98	 90.32		Avg2.	529	525	476	 90.67	 89.98	 90.32	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 19	Log-likelihood                       =      -1813.840084	Norm(log-likelihood gradient vector) =        189.367128	Norm(lambda vector)                  =         42.420653	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	525	506	 96.38	 95.65	 96.02		o	725	749	719	 95.99	 99.17	 97.56		i-np	691	671	652	 97.17	 94.36	 95.74		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.51	 96.39	 96.45		Avg2.	1945	1945	1877	 96.50	 96.50	 96.50	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	525	476	 90.67	 89.98	 90.32		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.67	 89.98	 90.32		Avg2.	529	525	476	 90.67	 89.98	 90.32	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 20	Log-likelihood                       =      -1725.977139	Norm(log-likelihood gradient vector) =        122.741876	Norm(lambda vector)                  =         43.414242	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	523	505	 96.56	 95.46	 96.01		o	725	745	718	 96.38	 99.03	 97.69		i-np	691	677	656	 96.90	 94.93	 95.91		-----	------	-----	-----	-------	-------	-------------		Avg1.				 96.61	 96.48	 96.54		Avg2.	1945	1945	1879	 96.61	 96.61	 96.61	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	523	476	 91.01	 89.98	 90.49		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.01	 89.98	 90.49		Avg2.	529	523	476	 91.01	 89.98	 90.49	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 21	Log-likelihood                       =      -1604.698049	Norm(log-likelihood gradient vector) =        112.755720	Norm(lambda vector)                  =         45.683589	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	508	 96.58	 96.03	 96.30		o	725	746	721	 96.65	 99.45	 98.03		i-np	691	673	658	 97.77	 95.22	 96.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.00	 96.90	 96.95		Avg2.	1945	1945	1887	 97.02	 97.02	 97.02	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	482	 91.63	 91.12	 91.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.63	 91.12	 91.37		Avg2.	529	526	482	 91.63	 91.12	 91.37	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 22	Log-likelihood                       =      -1483.869995	Norm(log-likelihood gradient vector) =        143.153108	Norm(lambda vector)                  =         48.646591	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	535	516	 96.45	 97.54	 96.99		o	725	745	722	 96.91	 99.59	 98.23		i-np	691	665	656	 98.65	 94.93	 96.76		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.34	 97.35	 97.35		Avg2.	1945	1945	1894	 97.38	 97.38	 97.38	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	535	492	 91.96	 93.01	 92.48		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.96	 93.01	 92.48		Avg2.	529	535	492	 91.96	 93.01	 92.48	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 23	Log-likelihood                       =      -1331.861185	Norm(log-likelihood gradient vector) =        172.722852	Norm(lambda vector)                  =         54.533690	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	515	 96.80	 97.35	 97.08		o	725	743	722	 97.17	 99.59	 98.37		i-np	691	670	659	 98.36	 95.37	 96.84		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.45	 97.44	 97.44		Avg2.	1945	1945	1896	 97.48	 97.48	 97.48	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	532	490	 92.11	 92.63	 92.37		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.11	 92.63	 92.37		Avg2.	529	532	490	 92.11	 92.63	 92.37	Current max chunk-based F1:  92.61 (iteration 14)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 24	Log-likelihood                       =      -1212.661370	Norm(log-likelihood gradient vector) =        126.200371	Norm(lambda vector)                  =         59.788284	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	532	516	 96.99	 97.54	 97.27		o	725	744	723	 97.18	 99.72	 98.43		i-np	691	669	660	 98.65	 95.51	 97.06		-----	------	-----	-----	-------	-------	-------------		Avg1.				 97.61	 97.59	 97.60		Avg2.	1945	1945	1899	 97.63	 97.63	 97.63	Chunk-based performance evaluation:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -