⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainlog.txt

📁 Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出
💻 TXT
📖 第 1 页 / 共 5 页
字号:
OPTION VALUES:Model directory: ./Training data file: train.taggedTesting data file: test.taggedUnlabeled data file: data.untaggedLabel representation: IOB2Model file: model.txtTraining log file (this one): trainlog.txtSecond-order Markov CRFsNumber of labels: 4Number of training sequences: 412Number of testing sequences: 86Number of unlabeled sequences: 0Number of context predicates: 10807Number of features: 17259Feature rare threshold: 1Context predicate rare threshold: 1Using multiple rare thresholds for features: 0Highlight feature: 0Number of training iterations: 60Initial lambda value:     0.0000Sigma square (for smoothing):   100.0000Epsilon for L-BFGS convergence:   0.000100Number of approximated hessian matrixes: 7Start to train ...Iteration: 1	Log-likelihood                       =     -26641.805032	Norm(log-likelihood gradient vector) =       5327.595333	Norm(lambda vector)                  =          0.000000	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	491	371	 75.56	 70.13	 72.75		o	725	828	639	 77.17	 88.14	 82.29		i-np	691	626	508	 81.15	 73.52	 77.15		-----	------	-----	-----	-------	-------	-------------		Avg1.				 77.96	 77.26	 77.61		Avg2.	1945	1945	1518	 78.05	 78.05	 78.05	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	491	269	 54.79	 50.85	 52.75		-----	------	-----	-----	-------	-------	-------------		Avg1.				 54.79	 50.85	 52.75		Avg2.	529	491	269	 54.79	 50.85	 52.75	Current max chunk-based F1:  52.75 (iteration 1)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 2	Log-likelihood                       =     -21582.014208	Norm(log-likelihood gradient vector) =       4677.718113	Norm(lambda vector)                  =          1.000000	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	486	388	 79.84	 73.35	 76.45		o	725	786	648	 82.44	 89.38	 85.77		i-np	691	673	551	 81.87	 79.74	 80.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 81.38	 80.82	 81.10		Avg2.	1945	1945	1587	 81.59	 81.59	 81.59	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	486	293	 60.29	 55.39	 57.73		-----	------	-----	-----	-------	-------	-------------		Avg1.				 60.29	 55.39	 57.73		Avg2.	529	486	293	 60.29	 55.39	 57.73	Current max chunk-based F1:  57.73 (iteration 2)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 3	Log-likelihood                       =      -9269.463734	Norm(log-likelihood gradient vector) =       3788.255409	Norm(lambda vector)                  =         10.401613	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	402	380	 94.53	 71.83	 81.63		o	725	830	696	 83.86	 96.00	 89.52		i-np	691	713	614	 86.12	 88.86	 87.46		-----	------	-----	-----	-------	-------	-------------		Avg1.				 88.17	 85.56	 86.85		Avg2.	1945	1945	1690	 86.89	 86.89	 86.89	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	402	310	 77.11	 58.60	 66.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 77.11	 58.60	 66.60		Avg2.	529	402	310	 77.11	 58.60	 66.60	Current max chunk-based F1:  66.60 (iteration 3)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 4	Log-likelihood                       =      -6725.988433	Norm(log-likelihood gradient vector) =       1681.165107	Norm(lambda vector)                  =          9.913913	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	506	459	 90.71	 86.77	 88.70		o	725	778	707	 90.87	 97.52	 94.08		i-np	691	661	607	 91.83	 87.84	 89.79		-----	------	-----	-----	-------	-------	-------------		Avg1.				 91.14	 90.71	 90.92		Avg2.	1945	1945	1773	 91.16	 91.16	 91.16	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	506	387	 76.48	 73.16	 74.78		-----	------	-----	-----	-------	-------	-------------		Avg1.				 76.48	 73.16	 74.78		Avg2.	529	506	387	 76.48	 73.16	 74.78	Current max chunk-based F1:  74.78 (iteration 4)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 5	Log-likelihood                       =      -6270.380695	Norm(log-likelihood gradient vector) =       1015.841971	Norm(lambda vector)                  =          9.252770	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	508	458	 90.16	 86.58	 88.33		o	725	800	713	 89.12	 98.34	 93.51		i-np	691	637	592	 92.94	 85.67	 89.16		-----	------	-----	-----	-------	-------	-------------		Avg1.				 90.74	 90.20	 90.47		Avg2.	1945	1945	1763	 90.64	 90.64	 90.64	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	508	388	 76.38	 73.35	 74.83		-----	------	-----	-----	-------	-------	-------------		Avg1.				 76.38	 73.35	 74.83		Avg2.	529	508	388	 76.38	 73.35	 74.83	Current max chunk-based F1:  74.83 (iteration 5)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 6	Log-likelihood                       =      -5969.689414	Norm(log-likelihood gradient vector) =        650.921272	Norm(lambda vector)                  =          9.234898	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	520	481	 92.50	 90.93	 91.71		o	725	791	715	 90.39	 98.62	 94.33		i-np	691	634	608	 95.90	 87.99	 91.77		-----	------	-----	-----	-------	-------	-------------		Avg1.				 92.93	 92.51	 92.72		Avg2.	1945	1945	1804	 92.75	 92.75	 92.75	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	520	431	 82.88	 81.47	 82.17		-----	------	-----	-----	-------	-------	-------------		Avg1.				 82.88	 81.47	 82.17		Avg2.	529	520	431	 82.88	 81.47	 82.17	Current max chunk-based F1:  82.17 (iteration 6)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 7	Log-likelihood                       =      -5516.616482	Norm(log-likelihood gradient vector) =        606.694867	Norm(lambda vector)                  =          9.900934	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	516	485	 93.99	 91.68	 92.82		o	725	776	717	 92.40	 98.90	 95.54		i-np	691	653	630	 96.48	 91.17	 93.75		-----	------	-----	-----	-------	-------	-------------		Avg1.				 94.29	 93.92	 94.10		Avg2.	1945	1945	1832	 94.19	 94.19	 94.19	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	516	447	 86.63	 84.50	 85.55		-----	------	-----	-----	-------	-------	-------------		Avg1.				 86.63	 84.50	 85.55		Avg2.	529	516	447	 86.63	 84.50	 85.55	Current max chunk-based F1:  85.55 (iteration 7)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 8	Log-likelihood                       =      -4872.376953	Norm(log-likelihood gradient vector) =        569.146507	Norm(lambda vector)                  =         11.534266	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	510	491	 96.27	 92.82	 94.51		o	725	741	710	 95.82	 97.93	 96.86		i-np	691	694	660	 95.10	 95.51	 95.31		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.73	 95.42	 95.58		Avg2.	1945	1945	1861	 95.68	 95.68	 95.68	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	510	458	 89.80	 86.58	 88.16		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.80	 86.58	 88.16		Avg2.	529	510	458	 89.80	 86.58	 88.16	Current max chunk-based F1:  88.16 (iteration 8)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 9	Log-likelihood                       =      -4079.737290	Norm(log-likelihood gradient vector) =        795.363991	Norm(lambda vector)                  =         15.318898	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	526	502	 95.44	 94.90	 95.17		o	725	763	722	 94.63	 99.59	 97.04		i-np	691	656	641	 97.71	 92.76	 95.17		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.93	 95.75	 95.84		Avg2.	1945	1945	1865	 95.89	 95.89	 95.89	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	526	471	 89.54	 89.04	 89.29		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.54	 89.04	 89.29		Avg2.	529	526	471	 89.54	 89.04	 89.29	Current max chunk-based F1:  89.29 (iteration 9)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 10	Log-likelihood                       =      -3616.619518	Norm(log-likelihood gradient vector) =        368.298852	Norm(lambda vector)                  =         17.278879	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	527	503	 95.45	 95.09	 95.27		o	725	762	722	 94.75	 99.59	 97.11		i-np	691	656	641	 97.71	 92.76	 95.17		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.97	 95.81	 95.89		Avg2.	1945	1945	1866	 95.94	 95.94	 95.94	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	527	472	 89.56	 89.22	 89.39		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.56	 89.22	 89.39		Avg2.	529	527	472	 89.56	 89.22	 89.39	Current max chunk-based F1:  89.39 (iteration 10)	Training iteration elapsed (including testing & evaluation time): 2 secondsIteration: 11	Log-likelihood                       =      -3401.327153	Norm(log-likelihood gradient vector) =        344.623130	Norm(lambda vector)                  =         19.439680	Iteration elapsed: 3 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		b-np	529	529	503	 95.09	 95.09	 95.09		o	725	762	721	 94.62	 99.45	 96.97		i-np	691	654	640	 97.86	 92.62	 95.17		-----	------	-----	-----	-------	-------	-------------		Avg1.				 95.85	 95.72	 95.79		Avg2.	1945	1945	1864	 95.84	 95.84	 95.84	Chunk-based performance evaluation:		Chunk	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)		-----	------	-----	-----	-------	-------	-------------		np	529	529	474	 89.60	 89.60	 89.60		-----	------	-----	-----	-------	-------	-------------		Avg1.				 89.60	 89.60	 89.60		Avg2.	529	529	474	 89.60	 89.60	 89.60	Current max chunk-based F1:  89.60 (iteration 11)	Training iteration elapsed (including testing & evaluation time): 3 secondsIteration: 12	Log-likelihood                       =      -3077.749137	Norm(log-likelihood gradient vector) =        297.771105	Norm(lambda vector)                  =         23.055484	Iteration elapsed: 2 seconds	Label-based performance evaluation:		Label	Manual	Model	Match	Pre.(%)	Rec.(%)	F1-Measure(%)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -