📄 evaluatechunk.cpp
字号:
/* * Copyright (C) 2004 - 2005 by * Hieu Xuan Phan & Minh Le Nguyen {hieuxuan, nguyenml}@jaist.ac.jp * Graduate School of Information Science, * Japan Advanced Institute of Science and Technology (JAIST) * * evaluatechunk.cpp - this file is part of FlexCRFs. * * Begin: Nov. 29, 2005 * Last change: Nov. 29, 2005 * * FlexCRFs is a free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2 of the License, * or (at your option) any later version. * * FlexCRFs is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with FlexCRFs; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */#include <iostream>#include <stdio.h>#include <stdlib.h>#include "../../../include/evaluatechunk.h"using namespace std;int str_2_int(map<string, int> & str2int, string & label) { map<string, int>::iterator it; it = str2int.find(label); if (it != str2int.end()) { return it->second; } return -1;}string int_2_str(map<int, string> & int2str, int label) { string result = ""; map<int, string>::iterator it; it = int2str.find(label); if (it != int2str.end()) { result = it->second; } return result; }// call this to compute precision, recall, and F1-measurevoid evaluate(dataset & data, string & chunktype, labelset & labels, chunkset & chunks) { map<string, int> lbstr2int; map<int, string> lbint2str; vector<int> human_lb_count, model_lb_count, human_model_lb_count; int i; int num_labels = labels.size(); for (i = 0; i < num_labels; i++) { lbstr2int.insert(pair<string, int>(labels[i], i)); lbint2str.insert(pair<int, string>(i, labels[i])); human_lb_count.push_back(0); model_lb_count.push_back(0); human_model_lb_count.push_back(0); } // start to count dataset::iterator datait; sequence::iterator seqit; for (datait = data.begin(); datait != data.end(); datait++) { for (seqit = datait->begin(); seqit != datait->end(); seqit++) { int label = str_2_int(lbstr2int, (*seqit)[seqit->size() - 2]); int model_label = str_2_int(lbstr2int, (*seqit)[seqit->size() - 1]); if (label >= 0 && label < num_labels) { human_lb_count[label]++; } if (model_label >= 0 && model_label < num_labels) { model_lb_count[model_label]++; } if (label == model_label && label >= 0 && label < num_labels) { human_model_lb_count[label]++; } } } // print out printf("\tLabel-based performance evaluation:\n\n"); printf("\t\tLabel\tManual\tModel\tMatch\tPre.(%)\tRec.(%)\tF1-Measure(%)\n"); printf("\t\t-----\t------\t-----\t-----\t-------\t-------\t-------------\n"); int count = 0; double precision = 0.0, recall = 0.0, f1, total1_pre = 0.0, total1_rec = 0.0, total1_f1 = 0.0, total2_pre = 0.0, total2_rec = 0.0, total2_f1 = 0.0; int total_human = 0, total_model = 0, total_match = 0; for (i = 0; i < num_labels; i++) { if (model_lb_count[i] > 0) { precision = (double)human_model_lb_count[i] / model_lb_count[i]; total_model += model_lb_count[i]; total1_pre += precision; } else { precision = 0.0; } if (human_lb_count[i] > 0) { recall = (double)human_model_lb_count[i] / human_lb_count[i]; total_human += human_lb_count[i]; total1_rec += recall; count++; } else { recall = 0.0; } total_match += human_model_lb_count[i]; if (recall + precision > 0) { f1 = (double) 2 * precision * recall / (precision + recall); } else { f1 = 0; } char buff[50]; sprintf(buff, "%d", i); string strlabel = int_2_str(lbint2str, i); if (strlabel != "") { sprintf(buff, "%s", strlabel.c_str()); } printf("\t\t%s\t%d\t%d\t%d\t%6.2f\t%6.2f\t%6.2f\n", buff, human_lb_count[i], model_lb_count[i], human_model_lb_count[i], precision * 100, recall * 100, f1 * 100); } total1_pre /= count; total1_rec /= count; total1_f1 = 2 * total1_pre * total1_rec / (total1_pre + total1_rec); // print the average performance total2_pre = (double)total_match / total_model; total2_rec = (double)total_match / total_human; total2_f1 = 2 * total2_pre * total2_rec / (total2_pre + total2_rec); printf("\t\t-----\t------\t-----\t-----\t-------\t-------\t-------------\n"); printf("\t\tAvg1.\t\t\t\t%6.2f\t%6.2f\t%6.2f\n", total1_pre * 100, total1_rec * 100, total1_f1 * 100); printf("\t\tAvg2.\t%d\t%d\t%d\t%6.2f\t%6.2f\t%6.2f\n\n", total_human, total_model, total_match, total2_pre * 100, total2_rec * 100, total2_f1 * 100); if (chunks.size() <= 0) { return; } // chunk based evaluation if (chunktype == "IOB1") { chunk_evaluate_iob1(data, chunks); } if (chunktype == "IOB2") { chunk_evaluate_iob2(data, chunks); } if (chunktype == "IOE1") { chunk_evaluate_ioe1(data, chunks); } if (chunktype == "IOE2") { chunk_evaluate_ioe2(data, chunks); }}//================================================================double chunk_evaluate_iob2(dataset & data, chunkset & chunks) { vector<int> human_chk_count; vector<int> model_chk_count; vector<int> match_chk_count; int i; int num_chunks = chunks.size(); for (i = 0; i < num_chunks; i++) { human_chk_count.push_back(0); model_chk_count.push_back(0); match_chk_count.push_back(0); } dataset::iterator datait; for (datait = data.begin(); datait != data.end(); datait++) { for (i = 0; i < num_chunks; i++) { human_chk_count[i] += count_chunks_iob2(1, *datait, chunks[i][0], chunks[i][1]); model_chk_count[i] += count_chunks_iob2(2, *datait, chunks[i][0], chunks[i][1]); match_chk_count[i] += count_matching_chunks_iob2(*datait, chunks[i][0], chunks[i][1]); } } printf("\tChunk-based performance evaluation:\n\n"); printf("\t\tChunk\tManual\tModel\tMatch\tPre.(%)\tRec.(%)\tF1-Measure(%)\n"); printf("\t\t-----\t------\t-----\t-----\t-------\t-------\t-------------\n"); int count = 0; double pre = 0.0, rec = 0.0, f1 = 0.0; double total1_pre = 0.0, total1_rec = 0.0, total1_f1 = 0.0; double total2_pre = 0.0, total2_rec = 0.0, total2_f1 = 0.0; int total_human = 0, total_model = 0, total_match = 0; for (i = 0; i < num_chunks; i++) { if (model_chk_count[i] > 0) { pre = (double)match_chk_count[i] / model_chk_count[i]; total_model += model_chk_count[i]; total1_pre += pre; } else { pre = 0.0; } if (human_chk_count[i] > 0) { rec = (double)match_chk_count[i] / human_chk_count[i]; total_human += human_chk_count[i]; total1_rec += rec; count++; } else { rec = 0.0; } total_match += match_chk_count[i]; if (pre + rec > 0) { f1 = (double) 2 * pre * rec / (pre + rec); } else { f1 = 0.0; } printf("\t\t%s\t%d\t%d\t%d\t%6.2f\t%6.2f\t%6.2f\n", chunks[i][2].c_str(), human_chk_count[i], model_chk_count[i], match_chk_count[i], pre * 100, rec * 100, f1 * 100); } printf("\t\t-----\t------\t-----\t-----\t-------\t-------\t-------------\n"); if (count > 0) { total1_pre /= count; total1_rec /= count; if (total1_pre + total1_rec > 0) { total1_f1 = 2 * total1_pre * total1_rec / (total1_pre + total1_rec); } printf("\t\tAvg1.\t\t\t\t%6.2f\t%6.2f\t%6.2f\n", total1_pre * 100, total1_rec * 100, total1_f1 * 100); } if (total_model > 0) { total2_pre = (double)total_match / total_model; } if (total_human > 0) { total2_rec = (double)total_match / total_human; } if (total2_pre + total2_rec > 0) { total2_f1 = 2 * total2_rec * total2_pre / (total2_rec + total2_pre); } printf("\t\tAvg2.\t%d\t%d\t%d\t%6.2f\t%6.2f\t%6.2f\n\n", total_human, total_model, total_match, total2_pre * 100, total2_rec * 100, total2_f1 * 100); return total2_f1 * 100;}// is start of a chunk (IOB2)?int is_start_of_chunk_iob2(int human_model, int i, sequence & seq, string b_tag, string i_tag) { if (human_model == 1) { return (seq[i][seq[i].size() - 2] == b_tag); } else if (human_model == 2) { return (seq[i][seq[i].size() - 1] == b_tag); } else { return 0; }}// is end of a chunk (IOB2)?int is_end_of_chunk_iob2(int human_model, int i, sequence & seq, string b_tag, string i_tag) { if (human_model == 1) { if (seq[i][seq[i].size() - 2] == b_tag) { if (i >= seq.size() - 1) { return 1; } else { if (seq[i + 1][seq[i + 1].size() - 2] != i_tag) { return 1; } else { return 0; } } } else if (seq[i][seq[i].size() - 2] == i_tag) { if (i >= seq.size() - 1) { return 1; } else { if (seq[i + 1][seq[i + 1].size() - 2] != i_tag) { return 1; } else { return 0; } } } else { return 0; } } else if (human_model == 2) { if (seq[i][seq[i].size() - 1] == b_tag) { if (i >= seq.size() - 1) { return 1; } else { if (seq[i + 1][seq[i + 1].size() - 1] != i_tag) { return 1; } else { return 0; } } } else if (seq[i][seq[i].size() - 1] == i_tag) { if (i >= seq.size() - 1) { return 1; } else { if (seq[i + 1][seq[i + 1].size() - 1] != i_tag) { return 1; } else { return 0; } } } else { return 0; } } else { return 0; }}// counting number of chunks (IOB2)int count_chunks_iob2(int human_model, sequence & seq, string b_tag, string i_tag) { int count = 0; for (int i = 0; i < seq.size(); i++) { if (human_model == 1 && is_start_of_chunk_iob2(1, i, seq, b_tag, i_tag)) { count++; } if (human_model == 2 && is_start_of_chunk_iob2(2, i, seq, b_tag, i_tag)) { count++; } } return count;}// is matching chunk (IOB2)? int is_matching_chunk_iob2(int i, sequence & seq, string b_tag, string i_tag) { if (!is_start_of_chunk_iob2(1, i, seq, b_tag, i_tag) || !is_start_of_chunk_iob2(2, i, seq, b_tag, i_tag)) { return 0; } int len = seq.size(); int j = i, k = i; while (j < len) { if (is_end_of_chunk_iob2(1, j, seq, b_tag, i_tag)) { break; } else { j++; } } while (k < len) { if (is_end_of_chunk_iob2(2, k, seq, b_tag, i_tag)) { break; } else { k++; } } return (j == k);}// counting matching chunks (IOB2)int count_matching_chunks_iob2(sequence & seq, string b_tag, string i_tag) { int count = 0; for (int i = 0; i < seq.size(); i++) { if (is_start_of_chunk_iob2(1, i, seq, b_tag, i_tag)) { if (is_matching_chunk_iob2(i, seq, b_tag, i_tag)) { count++; } } } return count;}//==============================================================double chunk_evaluate_iob1(dataset & data, chunkset & chunks) { vector<int> human_chk_count; vector<int> model_chk_count; vector<int> match_chk_count; int i; int num_chunks = chunks.size(); for (i = 0; i < num_chunks; i++) { human_chk_count.push_back(0); model_chk_count.push_back(0); match_chk_count.push_back(0); } dataset::iterator datait; for (datait = data.begin(); datait != data.end(); datait++) { for (i = 0; i < num_chunks; i++) { human_chk_count[i] += count_chunks_iob1(1, *datait, chunks[i][0], chunks[i][1]); model_chk_count[i] += count_chunks_iob1(2, *datait, chunks[i][0], chunks[i][1]); match_chk_count[i] += count_matching_chunks_iob1(*datait, chunks[i][0], chunks[i][1]); } } printf("\tChunk-based performance evaluation:\n\n"); printf("\t\tChunk\tManual\tModel\tMatch\tPre.(%)\tRec.(%)\tF1-Measure(%)\n"); printf("\t\t-----\t------\t-----\t-----\t-------\t-------\t-------------\n"); int count = 0; double pre = 0.0, rec = 0.0, f1 = 0.0; double total1_pre = 0.0, total1_rec = 0.0, total1_f1 = 0.0; double total2_pre = 0.0, total2_rec = 0.0, total2_f1 = 0.0; int total_human = 0, total_model = 0, total_match = 0; for (i = 0; i < num_chunks; i++) { if (model_chk_count[i] > 0) { pre = (double)match_chk_count[i] / model_chk_count[i]; total_model += model_chk_count[i]; total1_pre += pre; } else { pre = 0.0; } if (human_chk_count[i] > 0) { rec = (double)match_chk_count[i] / human_chk_count[i]; total_human += human_chk_count[i]; total1_rec += rec; count++; } else { rec = 0.0; } total_match += match_chk_count[i]; if (pre + rec > 0) { f1 = (double) 2 * pre * rec / (pre + rec); } else { f1 = 0.0; } printf("\t\t%s\t%d\t%d\t%d\t%6.2f\t%6.2f\t%6.2f\n", chunks[i][2].c_str(), human_chk_count[i], model_chk_count[i], match_chk_count[i], pre * 100, rec * 100, f1 * 100); } printf("\t\t-----\t------\t-----\t-----\t-------\t-------\t-------------\n"); if (count > 0) { total1_pre /= count; total1_rec /= count; if (total1_pre + total1_rec > 0) { total1_f1 = 2 * total1_pre * total1_rec / (total1_pre + total1_rec); } printf("\t\tAvg1.\t\t\t\t%6.2f\t%6.2f\t%6.2f\n", total1_pre * 100, total1_rec * 100, total1_f1 * 100); } if (total_model > 0) { total2_pre = (double)total_match / total_model; } if (total_human > 0) { total2_rec = (double)total_match / total_human; } if (total2_pre + total2_rec > 0) { total2_f1 = 2 * total2_rec * total2_pre / (total2_rec + total2_pre); } printf("\t\tAvg2.\t%d\t%d\t%d\t%6.2f\t%6.2f\t%6.2f\n\n", total_human, total_model, total_match, total2_pre * 100, total2_rec * 100, total2_f1 * 100); return total2_f1 * 100;}// is start of a chunk (IOB1)?int is_start_of_chunk_iob1(int human_model, int i, sequence & seq, string b_tag, string i_tag) { if (human_model == 1) { if (seq[i][seq[i].size() - 2] == b_tag) { return 1; } else if (seq[i][seq[i].size() - 2] == i_tag) { if (i <= 0) { return 1; } else { if (seq[i - 1][seq[i - 1].size() - 2] != i_tag && seq[i - 1][seq[i - 1].size() - 2] != b_tag) { return 1; } else { return 0; } } } else { return 0; } } else if (human_model == 2) { if (seq[i][seq[i].size() - 1] == b_tag) { return 1; } else if (seq[i][seq[i].size() - 1] == i_tag) { if (i <= 0) { return 1; } else { if (seq[i - 1][seq[i - 1].size() - 1] != i_tag && seq[i - 1][seq[i - 1].size() - 1] != b_tag) { return 1; } else { return 0; } } } else { return 0; } } else { return 0; }}// is end of a chunk (IOB1)?int is_end_of_chunk_iob1(int human_model, int i, sequence & seq, string b_tag, string i_tag) { if (human_model == 1) { if (seq[i][seq[i].size() - 2] == b_tag) { if (i >= seq.size() - 1) { return 1; } else { if (seq[i + 1][seq[i + 1].size() - 2] != i_tag) { return 1; } else { return 0; } } } else if (seq[i][seq[i].size() - 2] == i_tag) { if (i >= seq.size() - 1) { return 1; } else { if (seq[i + 1][seq[i + 1].size() - 2] != i_tag) { return 1; } else { return 0; } } } else { return 0; } } else if (human_model == 2) { if (seq[i][seq[i].size() - 1] == b_tag) { if (i >= seq.size() - 1) { return 1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -