📄 curve.cpp
字号:
/*
borZoi - An Elliptic Curve Cryptography Library
Copyright (C) 2001 Anthony Mulcahy
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
\You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "borzoi_util.h"
Point Point::negative () {
Point p = *this;
p.y += p.x;
return p;
}
Point& Point::operator= (const Point& p) {
if (this != &p) { // avoid self assignment
x = p.x; y = p.y;
}
return *this;
}
std::ostream& Point::put (std::ostream&s) {
s<<"x:0x";
OCTETSTR x_buf = FE2OSP (x);
//for (int i=x_buf.size()-1; i>=0; i--) {
for (int i=0; i<x_buf.size(); i++) {
s<<std::hex<<((x_buf[i]&0xf0)>>4);
s<<std::hex<<(x_buf[i]&0xf);
}
s<<" y:0x";
OCTETSTR y_buf = FE2OSP (y);
//for (int j=y_buf.size()-1; j>=0; j--) {
for (int j=0; j<y_buf.size(); j++) {
s<<std::hex<<((y_buf[j]&0xf0)>>4);
s<<std::hex<<(y_buf[j]&0xf);
}
return s;
}
std::ostream& Curve::put (std::ostream&s) {
s << "Y^2 + XY = x^3 + a2x^2 + a6\n";
s << "a2: ";
OCTETSTR a2_buf = FE2OSP (a2);
//for (int i=a2_buf.size()-1; i>=0; i--) {
for (int i=0; i<a2_buf.size(); i++) {
s<<std::hex<<((a2_buf[i]&0xf0)>>4);
s<<std::hex<<(a2_buf[i]&0xf);
}
s << '\n';
s << "a6: ";
OCTETSTR a6_buf = FE2OSP (a6);
//for (int j=a6_buf.size()-1; j>=0; j--) {
for (int j=0; j<a6_buf.size(); j++) {
s<<std::hex<<((a6_buf[j]&0xf0)>>4);
s<<std::hex<<(a6_buf[j]&0xf);
}
s << '\n';
return s;
}
// Based on the equations in Chap. 5 of Implementing Elliptic Curve Cryptography
// by Mike Rosing
Point Curve::add (Point p1, Point p2) {
if (p1.isZero ())
return p2;
if (p2.isZero ())
return p1;
F2M x1 = p1.x + p2.x;
F2M y1 = p1.y + p2.y;
Point p3;
if (x1.isZero())
return p3;
F2M theta = x1.inverse() * y1;
//F2M theta2 = theta * theta;
p3.x = theta.sqr() + theta + p1.x + p2.x + a2;
p3.y = (p1.x + p3.x)*theta + p3.x + p1.y;
return p3;
}
// Based on the equations in Chap. 5 of Implementing Elliptic Curve Cryptography
// by Mike Rosing
Point Curve::dbl (Point p1) {
Point p3;
if ((p1.x).isZero ())
return p3;
F2M theta = p1.x + (p1.x.inverse () * p1.y);
//F2M theta2 = theta*theta;
p3.x = theta.sqr() + theta + a2;
p3.y = p1.x.sqr() + ((theta + F2M(1)) * p3.x);
return p3;
}
// Based on Algorithm IV.1 on p. 63 of Elliptic Curves in Cryptography
// by I. F. Blake, G. Seroussi, N. P. Smart.
Point Curve::mul (BigInt k, Point P) {
Point Q;
for (long j=k.numBits()-1; j>=0; j--) {
Q = dbl (Q);
if (k.getBit(j)) {
Q = add (Q, P);
}
}
return Q;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -