📄 mpi.c
字号:
/*
mpi.c
by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
Arbitrary precision integer arithmetic library
$Id: mpi.c,v 1.18 2001/06/04 18:37:31 sting Exp $
*/
#include "mpi.h"
#include "rng.h" /* added by Anthony Mulcahy for borZoi */
#include <stdio.h> /* added by Anthony Mulcahy for borZoi */
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#if MP_DEBUG
#include <stdio.h>
#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
#else
#define DIAG(T,V)
#endif
#include <math.h>
#define LOG_V_2(R) (log(2.0)/log(R))
/* Default precision for newly created mp_int's */
static unsigned int s_mp_defprec = MP_DEFPREC;
/* {{{ Digit arithmetic macros */
/*
When adding and multiplying digits, the results can be larger than
can be contained in an mp_digit. Thus, an mp_word is used. These
macros mask off the upper and lower digits of the mp_word (the
mp_word may be more than 2 mp_digits wide, but we only concern
ourselves with the low-order 2 mp_digits)
If your mp_word DOES have more than 2 mp_digits, you need to
uncomment the first line, and comment out the second.
*/
/* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
#define CARRYOUT(W) ((W)>>DIGIT_BIT)
#define ACCUM(W) ((W)&MP_DIGIT_MAX)
/* }}} */
/* {{{ Comparison constants */
#define MP_LT -1
#define MP_EQ 0
#define MP_GT 1
/* }}} */
/* {{{ Constant strings */
/* Constant strings returned by mp_strerror() */
static const char *mp_err_string[] = {
"unknown result code", /* say what? */
"boolean true", /* MP_OKAY, MP_YES */
"boolean false", /* MP_NO */
"out of memory", /* MP_MEM */
"argument out of range", /* MP_RANGE */
"invalid input parameter", /* MP_BADARG */
"result is undefined" /* MP_UNDEF */
};
/* Value to digit maps for radix conversion */
/* s_dmap_1 - standard digits and letters */
static const char *s_dmap_1 =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#if 0
/* s_dmap_2 - base64 ordering for digits */
static const char *s_dmap_2 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
#endif
/* }}} */
/* {{{ Static function declarations */
/*
If MP_MACRO is false, these will be defined as actual functions;
otherwise, suitable macro definitions will be used. This works
around the fact that ANSI C89 doesn't support an 'inline' keyword
(although I hear C9x will ... about bloody time). At present, the
macro definitions are identical to the function bodies, but they'll
expand in place, instead of generating a function call.
I chose these particular functions to be made into macros because
some profiling showed they are called a lot on a typical workload,
and yet they are primarily housekeeping.
*/
#if MP_MACRO == 0
void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
void s_mp_free(void *ptr); /* general free function */
#else
/* Even if these are defined as macros, we need to respect the settings
of the MP_MEMSET and MP_MEMCPY configuration options...
*/
#if MP_MEMSET == 0
#define s_mp_setz(dp, count) \
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
#else
#define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
#endif /* MP_MEMSET */
#if MP_MEMCPY == 0
#define s_mp_copy(sp, dp, count) \
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
#else
#define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
#endif /* MP_MEMCPY */
#define s_mp_alloc(nb, ni) calloc(nb, ni)
#define s_mp_free(ptr) {if(ptr) free(ptr);}
#endif /* MP_MACRO */
mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/
void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */
mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
/* unsigned digit divide */
mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
/* Barrett reduction */
mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */
mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */
mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */
#if 0
void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
/* multiply buffers in place */
#endif
#if MP_SQUARE
mp_err s_mp_sqr(mp_int *a); /* magnitude square */
#else
#define s_mp_sqr(a) s_mp_mul(a, a)
#endif
mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */
mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */
int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */
int s_mp_ispow2(mp_int *v); /* is v a power of 2? */
int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
int s_mp_tovalue(char ch, int r); /* convert ch to value */
char s_mp_todigit(int val, int r, int low); /* convert val to digit */
int s_mp_outlen(int bits, int r); /* output length in bytes */
/* }}} */
/* {{{ Default precision manipulation */
unsigned int mp_get_prec(void)
{
return s_mp_defprec;
} /* end mp_get_prec() */
void mp_set_prec(unsigned int prec)
{
if(prec == 0)
s_mp_defprec = MP_DEFPREC;
else
s_mp_defprec = prec;
} /* end mp_set_prec() */
/* }}} */
/*------------------------------------------------------------------------*/
/* {{{ mp_init(mp) */
/*
mp_init(mp)
Initialize a new zero-valued mp_int. Returns MP_OKAY if successful,
MP_MEM if memory could not be allocated for the structure.
*/
mp_err mp_init(mp_int *mp)
{
return mp_init_size(mp, s_mp_defprec);
} /* end mp_init() */
/* }}} */
/* {{{ mp_init_size(mp, prec) */
/*
mp_init_size(mp, prec)
Initialize a new zero-valued mp_int with at least the given
precision; returns MP_OKAY if successful, or MP_MEM if memory could
not be allocated for the structure.
*/
mp_err mp_init_size(mp_int *mp, mp_size prec)
{
ARGCHK(mp != NULL && prec > 0, MP_BADARG);
if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
return MP_MEM;
SIGN(mp) = MP_ZPOS;
USED(mp) = 1;
ALLOC(mp) = prec;
return MP_OKAY;
} /* end mp_init_size() */
/* }}} */
/* {{{ mp_init_copy(mp, from) */
/*
mp_init_copy(mp, from)
Initialize mp as an exact copy of from. Returns MP_OKAY if
successful, MP_MEM if memory could not be allocated for the new
structure.
*/
mp_err mp_init_copy(mp_int *mp, mp_int *from)
{
ARGCHK(mp != NULL && from != NULL, MP_BADARG);
if(mp == from)
return MP_OKAY;
if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
return MP_MEM;
s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
USED(mp) = USED(from);
ALLOC(mp) = USED(from);
SIGN(mp) = SIGN(from);
return MP_OKAY;
} /* end mp_init_copy() */
/* }}} */
/* {{{ mp_copy(from, to) */
/*
mp_copy(from, to)
Copies the mp_int 'from' to the mp_int 'to'. It is presumed that
'to' has already been initialized (if not, use mp_init_copy()
instead). If 'from' and 'to' are identical, nothing happens.
*/
mp_err mp_copy(mp_int *from, mp_int *to)
{
ARGCHK(from != NULL && to != NULL, MP_BADARG);
if(from == to)
return MP_OKAY;
{ /* copy */
mp_digit *tmp;
/*
If the allocated buffer in 'to' already has enough space to hold
all the used digits of 'from', we'll re-use it to avoid hitting
the memory allocater more than necessary; otherwise, we'd have
to grow anyway, so we just allocate a hunk and make the copy as
usual
*/
if(ALLOC(to) >= USED(from)) {
s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
} else {
if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
return MP_MEM;
s_mp_copy(DIGITS(from), tmp, USED(from));
if(DIGITS(to) != NULL) {
#if MP_CRYPTO
s_mp_setz(DIGITS(to), ALLOC(to));
#endif
s_mp_free(DIGITS(to));
}
DIGITS(to) = tmp;
ALLOC(to) = USED(from);
}
/* Copy the precision and sign from the original */
USED(to) = USED(from);
SIGN(to) = SIGN(from);
} /* end copy */
return MP_OKAY;
} /* end mp_copy() */
/* }}} */
/* {{{ mp_exch(mp1, mp2) */
/*
mp_exch(mp1, mp2)
Exchange mp1 and mp2 without allocating any intermediate memory
(well, unless you count the stack space needed for this call and the
locals it creates...). This cannot fail.
*/
void mp_exch(mp_int *mp1, mp_int *mp2)
{
#if MP_ARGCHK == 2
assert(mp1 != NULL && mp2 != NULL);
#else
if(mp1 == NULL || mp2 == NULL)
return;
#endif
s_mp_exch(mp1, mp2);
} /* end mp_exch() */
/* }}} */
/* {{{ mp_clear(mp) */
/*
mp_clear(mp)
Release the storage used by an mp_int, and void its fields so that
if someone calls mp_clear() again for the same int later, we won't
get tollchocked.
*/
void mp_clear(mp_int *mp)
{
if(mp == NULL)
return;
if(DIGITS(mp) != NULL) {
#if MP_CRYPTO
s_mp_setz(DIGITS(mp), ALLOC(mp));
#endif
s_mp_free(DIGITS(mp));
DIGITS(mp) = NULL;
}
USED(mp) = 0;
ALLOC(mp) = 0;
} /* end mp_clear() */
/* }}} */
/* {{{ mp_zero(mp) */
/*
mp_zero(mp)
Set mp to zero. Does not change the allocated size of the structure,
and therefore cannot fail (except on a bad argument, which we ignore)
*/
void mp_zero(mp_int *mp)
{
if(mp == NULL)
return;
s_mp_setz(DIGITS(mp), ALLOC(mp));
USED(mp) = 1;
SIGN(mp) = MP_ZPOS;
} /* end mp_zero() */
/* }}} */
/* {{{ mp_set(mp, d) */
void mp_set(mp_int *mp, mp_digit d)
{
if(mp == NULL)
return;
mp_zero(mp);
DIGIT(mp, 0) = d;
} /* end mp_set() */
/* }}} */
/* {{{ mp_set_int(mp, z) */
mp_err mp_set_int(mp_int *mp, long z)
{
int ix;
unsigned long v = abs(z);
mp_err res;
ARGCHK(mp != NULL, MP_BADARG);
mp_zero(mp);
if(z == 0)
return MP_OKAY; /* shortcut for zero */
for(ix = sizeof(long) - 1; ix >= 0; ix--) {
if((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
return res;
res = s_mp_add_d(mp,
(mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
if(res != MP_OKAY)
return res;
}
if(z < 0)
SIGN(mp) = MP_NEG;
return MP_OKAY;
} /* end mp_set_int() */
/* }}} */
/*------------------------------------------------------------------------*/
/* {{{ Digit arithmetic */
/* {{{ mp_add_d(a, d, b) */
/*
mp_add_d(a, d, b)
Compute the sum b = a + d, for a single digit d. Respects the sign of
its primary addend (single digits are unsigned anyway).
*/
mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
{
mp_err res = MP_OKAY;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
if(SIGN(b) == MP_ZPOS) {
res = s_mp_add_d(b, d);
} else if(s_mp_cmp_d(b, d) >= 0) {
res = s_mp_sub_d(b, d);
} else {
SIGN(b) = MP_ZPOS;
DIGIT(b, 0) = d - DIGIT(b, 0);
}
return res;
} /* end mp_add_d() */
/* }}} */
/* {{{ mp_sub_d(a, d, b) */
/*
mp_sub_d(a, d, b)
Compute the difference b = a - d, for a single digit d. Respects the
sign of its subtrahend (single digits are unsigned anyway).
*/
mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
{
mp_err res;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
if(SIGN(b) == MP_NEG) {
if((res = s_mp_add_d(b, d)) != MP_OKAY)
return res;
} else if(s_mp_cmp_d(b, d) >= 0) {
if((res = s_mp_sub_d(b, d)) != MP_OKAY)
return res;
} else {
mp_neg(b, b);
DIGIT(b, 0) = d - DIGIT(b, 0);
SIGN(b) = MP_NEG;
}
if(s_mp_cmp_d(b, 0) == 0)
SIGN(b) = MP_ZPOS;
return MP_OKAY;
} /* end mp_sub_d() */
/* }}} */
/* {{{ mp_mul_d(a, d, b) */
/*
mp_mul_d(a, d, b)
Compute the product b = a * d, for a single digit d. Respects the sign
of its multiplicand (single digits are unsigned anyway)
*/
mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
{
mp_err res;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if(d == 0) {
mp_zero(b);
return MP_OKAY;
}
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
res = s_mp_mul_d(b, d);
return res;
} /* end mp_mul_d() */
/* }}} */
/* {{{ mp_mul_2(a, c) */
mp_err mp_mul_2(mp_int *a, mp_int *c)
{
mp_err res;
ARGCHK(a != NULL && c != NULL, MP_BADARG);
if((res = mp_copy(a, c)) != MP_OKAY)
return res;
return s_mp_mul_2(c);
} /* end mp_mul_2() */
/* }}} */
/* {{{ mp_div_d(a, d, q, r) */
/*
mp_div_d(a, d, q, r)
Compute the quotient q = a / d and remainder r = a mod d, for a
single digit d. Respects the sign of its divisor (single digits are
unsigned anyway).
*/
mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
{
mp_err res;
mp_digit rem;
int pow;
ARGCHK(a != NULL, MP_BADARG);
if(d == 0)
return MP_RANGE;
/* Shortcut for powers of two ... */
if((pow = s_mp_ispow2d(d)) >= 0) {
mp_digit mask;
mask = (1 << pow) - 1;
rem = DIGIT(a, 0) & mask;
if(q) {
mp_copy(a, q);
s_mp_div_2d(q, pow);
}
if(r)
*r = rem;
return MP_OKAY;
}
/*
If the quotient is actually going to be returned, we'll try to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -