📄 aestmr.cpp
字号:
/*
-------------------------------------------------------------------------
Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK.
All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and fitness for purpose.
-------------------------------------------------------------------------
Issue Date: 15/01/2002
*/
// Measure the Encryption, Decryption and Key Setup Times for AES using
// the Pentium Time Stamp Counter
#include <iostream>
#include <fstream>
#ifdef AES_IN_CPP
#include "aescpp.h"
#else
#include "aes.h"
#endif
#include "aesaux.h"
#include "aestst.h"
// Use this define if testing aespp.c
//#define AESX
#if defined(AES_DLL)
fn_ptrs fn;
#endif
#define PROCESSOR "PIII" // Processor
void cycles(volatile unsigned __int64 *rtn)
{
__asm // read the Pentium Time Stamp Counter
{ cpuid
rdtsc
mov ecx,rtn
mov [ecx],eax
mov [ecx+4],edx
cpuid
}
}
const unsigned int loops = 100; // number of timing loops
word rand32(void)
{ static word r4,r_cnt = -1,w = 521288629,z = 362436069;
z = 36969 * (z & 65535) + (z >> 16);
w = 18000 * (w & 65535) + (w >> 16);
r_cnt = 0; r4 = (z << 16) + w; return r4;
}
byte rand8(void)
{ static word r4,r_cnt = 4;
if(r_cnt == 4)
{
r4 = rand32(); r_cnt = 0;
}
return (char)(r4 >> (8 * r_cnt++));
}
// fill a block with random charactrers
void block_rndfill(byte l[], word len)
{ word i;
for(i = 0; i < len; ++i)
l[i] = rand8();
}
// measure cycles for an encryption call
word e_cycles(const word klen, f_ctx* alg)
{ byte pt[16], ct[16], key[32];
word i, c1, c2;
unsigned volatile __int64 cy0, cy1, cy2;
// set up a random key of 256 bits
block_rndfill(key, 32);
// set up a random plain text
block_rndfill(pt, 16);
// do a set_key in case it is necessary
f_enc_key(alg, key, klen); c1 = c2 = 0xffffffff;
// do an encrypt to remove any 'first time through' effects
f_enc_blk(alg, pt, ct);
for(i = 0; i < loops; ++i)
{
block_rndfill(pt, 16);
// time one and two encryptions
cycles(&cy0);
f_enc_blk(alg, pt, ct);
cycles(&cy1);
f_enc_blk(alg, ct, ct);
f_enc_blk(alg, ct, ct);
f_enc_blk(alg, ct, ct);
f_enc_blk(alg, ct, ct);
f_enc_blk(alg, ct, ct);
cycles(&cy2);
cy2 -= cy1; cy1 -= cy0; // time for one and two calls
c1 = (word)(c1 > cy1 ? cy1 : c1); // find minimum values over the loops
c2 = (word)(c2 > cy2 ? cy2 : c2);
}
return ((c2 - c1) + 1) >> 2; // return one call timing
}
// measure cycles for a decryption call
word d_cycles(const word klen, f_ctx* alg)
{ byte pt[16], ct[16], key[32];
word i, c1, c2;
unsigned volatile __int64 cy0, cy1, cy2;
// set up a random key of 256 bits
block_rndfill(key, 32);
// set up a random plain text
block_rndfill(pt, 16);
// do a set_key in case it is necessary
f_dec_key(alg, key, klen); c1 = c2 = 0xffffffff;
// do an decrypt to remove any 'first time through' effects
f_dec_blk(alg, pt, ct);
for(i = 0; i < loops; ++i)
{
block_rndfill(pt, 16);
// time one and two encryptions
cycles(&cy0);
f_dec_blk(alg, pt, ct);
cycles(&cy1);
f_dec_blk(alg, ct, ct);
f_dec_blk(alg, ct, ct);
f_dec_blk(alg, ct, ct);
f_dec_blk(alg, ct, ct);
f_dec_blk(alg, ct, ct);
cycles(&cy2);
cy2 -= cy1; cy1 -= cy0; // time for one and two calls
c1 = (word)(c1 > cy1 ? cy1 : c1); // find minimum values over the loops
c2 = (word)(c2 > cy2 ? cy2 : c2);
}
return ((c2 - c1) + 1) >> 2; // return one call timing
}
// measure cycles for an encryption key setup
word ke_cycles(const word klen, f_ctx* alg)
{ byte key[32];
word i, c1, c2;
unsigned volatile __int64 cy0, cy1, cy2;
// set up a random key of 256 bits
block_rndfill(key, 32);
// do an set_key to remove any 'first time through' effects
f_enc_key(alg, key, klen); c1 = c2 = 0xffffffff;
for(i = 0; i < loops; ++i)
{
block_rndfill(key, 32);
// time one and two encryptions
cycles(&cy0);
f_enc_key(alg, key, klen);
cycles(&cy1);
f_enc_key(alg, key, klen);
f_enc_key(alg, key, klen);
f_enc_key(alg, key, klen);
f_enc_key(alg, key, klen);
f_enc_key(alg, key, klen);
cycles(&cy2);
cy2 -= cy1; cy1 -= cy0; // time for one and two calls
c1 = (word)(c1 > cy1 ? cy1 : c1); // find minimum values over the loops
c2 = (word)(c2 > cy2 ? cy2 : c2);
}
return ((c2 - c1) + 1) >> 2; // return one call timing
}
// measure cycles for an encryption key setup
word kd_cycles(const word klen, f_ctx* alg)
{ byte key[32];
word i, c1, c2;
unsigned volatile __int64 cy0, cy1, cy2;
// set up a random key of 256 bits
block_rndfill(key, 32);
// do an set_key to remove any 'first time through' effects
f_dec_key(alg, key, klen); c1 = c2 = 0xffffffff;
for(i = 0; i < loops; ++i)
{
block_rndfill(key, 32);
// time one and two encryptions
cycles(&cy0);
f_dec_key(alg, key, klen);
cycles(&cy1);
f_dec_key(alg, key, klen);
f_dec_key(alg, key, klen);
f_dec_key(alg, key, klen);
f_dec_key(alg, key, klen);
f_dec_key(alg, key, klen);
cycles(&cy2);
cy2 -= cy1; cy1 -= cy0; // time for one and two calls
c1 = (word)(c1 > cy1 ? cy1 : c1); // find minimum values over the loops
c2 = (word)(c2 > cy2 ? cy2 : c2);
}
return ((c2 - c1) + 1) >> 2; // return one call timing
}
static word kl[5] = { 16, 20, 24, 28, 32 };
static word ekt[5], dkt[5], et[5], dt[5];
void output(std::ofstream& outf, const word inx, const word bits)
{ word t;
byte c0, c1, c2;
outf << "\n// " << 8 * kl[inx] << " Bit:";
outf << " Key Setup: " << ekt[inx] << '/' << dkt[inx] << " cycles";
t = (1000 * bits + et[inx] / 2) / et[inx];
c0 = (byte)('0' + t / 100); c1 = (byte)('0' + (t / 10) % 10); c2 = (byte)('0' + t % 10);
outf << "\n// Encrypt: " << et[inx] << " cycles = 0."
<< c0 << c1 << c2 << " bits/cycle";
t = (1000 * bits + dt[inx] / 2) / dt[inx];
c0 = (byte)('0' + t / 100); c1 = (byte)('0' + (t / 10) % 10); c2 = (byte)('0' + t % 10);
outf << "\n// Decrypt: " << dt[inx] << " cycles = 0."
<< c0 << c1 << c2 << " bits/cycle";
}
#if defined(AESX)
#define INC 1
#else
#define INC 2
#endif
#if BLOCK_SIZE == 16
#define STR 0
#define CNT 1
#elif BLOCK_SIZE == 20
#define STR 1
#define CNT 2
#elif BLOCK_SIZE == 24
#define STR 2
#define CNT 3
#elif BLOCK_SIZE == 28
#define STR 3
#define CNT 4
#elif BLOCK_SIZE == 32
#define STR 4
#define CNT 5
#elif !defined(BLOCK_SIZE)
#define STR 0
#define CNT 5
#else
#error Illegal block size
#endif
#ifdef AES_DLL
#include "windows.h"
HINSTANCE init_dll(fn_ptrs& fn)
{ HINSTANCE h_dll;
if(!(h_dll = LoadLibrary(dll_path)))
{
std::cout << "\n\nDynamic link Library AES_DLL not found\n\n"; return 0;
}
fn.fn_blk_len = (g_blk_len*)GetProcAddress(h_dll, "_aes_blk_len@8");
fn.fn_enc_key = (g_enc_key*)GetProcAddress(h_dll, "_aes_enc_key@12");
fn.fn_dec_key = (g_dec_key*)GetProcAddress(h_dll, "_aes_dec_key@12");
fn.fn_enc_blk = (g_enc_blk*)GetProcAddress(h_dll, "_aes_enc_blk@12");
fn.fn_dec_blk = (g_dec_blk*)GetProcAddress(h_dll, "_aes_dec_blk@12");
#if !defined(BLOCK_SIZE)
if(!fn.fn_enc_key || !fn.fn_dec_key || !fn.fn_enc_blk || !fn.fn_dec_blk || !fn.fn_blk_len)
#else
if(!fn.fn_enc_key || !fn.fn_dec_key || !fn.fn_enc_blk || !fn.fn_dec_blk)
#endif
{
std::cout << "\n\nRequired DLL Entry Point(s) not found\n\n";
FreeLibrary(h_dll);
return 0;
}
return h_dll;
}
#endif // AES_DLL
int main(int argc, char *argv[])
{ std::ofstream outf;
f_ctx alg;
#if defined(AES_DLL)
HINSTANCE h_dll;
if(!(h_dll = init_dll(fn))) return -1;
#endif
#if !defined(AES_IN_CPP)
alg.n_blk = 0;
alg.n_rnd = 0;
#endif
outf.open(argc == 2 ? argv[1] : "CON", std::ios_base::out);
outf << "\n// AES"
#if defined(AES_DLL)
" (DLL)"
#endif
" on " << PROCESSOR << " processor";
for(int bi = STR; bi < CNT; bi += INC)
{
#if defined(AES_DLL)
if(fn.fn_blk_len) f_blk_len(&alg, 16 + 4 * bi);
#elif !defined(BLOCK_SIZE)
f_blk_len(&alg, 16 + 4 * bi);
#else
if(16 + 4 * bi != BLOCK_SIZE) continue;
#endif
for(word ki = 0; ki < 5; ki += INC)
{
ekt[ki] = ke_cycles(kl[ki], &alg);
dkt[ki] = kd_cycles(kl[ki], &alg);
et[ki] = e_cycles(kl[ki], &alg);
dt[ki] = d_cycles(kl[ki], &alg);
}
outf << "\n// Block Length: " << 128 + 32 * bi;
for(word k = 0; k < 5; k += INC)
output(outf, k, 128 + 32 * bi);
}
#if defined(AES_DLL)
if(h_dll) FreeLibrary(h_dll);
#endif
outf << "\n\n";
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -